Смекни!
smekni.com

Билеты по физике (стр. 3 из 4)

9. 3. Очистка металлов от примесей (рафинирование металлов).

10. 4. Электрополировка металлических изделий. При этом изделие играет роль анода в специально подобранном электролите. На микронеровностях (выступах) на поверхности изделия повышается электрический потенциал, что способствует их первоочередному растворению в электролите.

11. 5. Получение некоторых газов (водород, хлор).

12. 6. Получение металлов из расплавов руд. Именно так добывают аллюминий.

Билет 20

Полупроводники – элементы и соединения у кот с увел темпер удельн сопротивл не растет, как у металлов, а наоборот, чрезвычайно резко уменьш. При низк темпер полупров ведет себя как диэлектрик. При нагрев полупров Ек валентных электронов повышается и наступает разрыв отдельных связей. Некотор электроны покидают свои проторенные пути и станов свободн, подобно электронам в металле. В эл поле они перемещ между узлами решетки образуя электрический ток. Электронная провод – проводимость полупр, обусловленная наличием у них свободн электр. Дырочн провод – проводимость полупр, обусловленн упорядоч перемещ дырок. Механизм электр и дырочн проводим: в отсутствии внешнего поля имеется 1 электрон (-) и 1 дырка (+). При наложении поля происходит перемещение электронов. Свободн электр смещ против напряженности поля. В этом напр перемещ также один из связанных электронов. Образуется дырка, кот перемещ по всему кристаллу. Собствен провод – это проводимость чистых полупр. Она обычно невелика, так как мало число свободн электронов. Число свободн электр составл одну десятимиллиардную часть от общ числа. Примесная проводимость – дополнительн провод существ наряду с собственн., обуславл наличием примесей в полупр. Сущ донорн и акцепторн примечи. Донорн прим – это прим, легко отдающие электроны, и следов, увеличивающие число свободн электронов. Поскольку полупров, имеющ донорн примеси облад больш числом электр, их назыв полупр n-типа. В полупр n-типа электр явл осн носит заряда, а дырки – неосн. Акцепт прим – это принимающие примеси. Осн носит заряда в полупр p-типа явл дырки, а электр – неосн. Акцепт прим создают дырки: образ полупр р-типа. Электропров полупр зависит от темпер, так как с повыш темп возрастает число разрывов ковалентных связей и увеличивается кол-во свободн электр. Кроме нагрев разрыв ков связи может быть вызв освещением (фотопроводим полупров). Терморез использ для измер темп по силе тока в цепи с полупр. Терморез примен для дистанцион измерения температ, противопожарн сигн и т.д. Фоторез – приборы в кот использ фотоэлектр эффект. Фотоэлектр эффект – явлен позвол регистрировать и измерять слабые световые потоки. Использ в солн батареях и т.д..

Билет 21

Электр-дырочн переходом наз контакт 2 полупров nи р – типов. Суш прямой и обратный переход. Прям перех: такое подкл, когда потенциал полупр р-типа – полож, а n-типа – отриц. Ток через р-n переход осущ осн носит: из области n в область р – электронами, а из области р в область n – дырками. Вследствие этого проводимость всего образца велика, а сопротивл мало.

Обратн переход. Переключим полюсы источн тока. Тогда при той же разн потенциалов сила тока в цепи окажется значит меньше, чем при прямом переходе. Это обусловл следующ: электр через контакт идут теперь из области р в область n, а дырки из области n в область р. Но в полупр р-типа мало свободн электр, а в полупр n-типа мало дырок. Теперь переход через контакт осущ неосн носителями, число кот мало. Вследствие этого проводимость образца оказывается незнач, а сопротивл – больш. Образ так назыв запирающ слой. Полупр диоды использ в соврем техн для выпрямл перемен тока. В полупр диоде используется св-во p-n перехода

Билет 21

Электр-дырочн переходом наз контакт 2 полупров nи р – типов. Суш прямой и обратный переход. Прям перех: такое подкл, когда потенциал полупр р-типа – полож, а n-типа – отриц. Ток через р-n переход осущ осн носит: из области n в область р – электронами, а из области р в область n – дырками. Вследствие этого проводимость всего образца велика, а сопротивл мало.

Обратн переход. Переключим полюсы источн тока. Тогда при той же разн потенциалов сила тока в цепи окажется значит меньше, чем при прямом переходе. Это обусловл следующ: электр через контакт идут теперь из области р в область n, а дырки из области n в область р. Но в полупр р-типа мало свободн электр, а в полупр n-типа мало дырок. Теперь переход через контакт осущ неосн носителями, число кот мало. Вследствие этого проводимость образца оказывается незнач, а сопротивл – больш. Образ так назыв запирающ слой. Полупр диоды использ в соврем техн для выпрямл перемен тока. В полупр диоде используется св-во p-n перехода. На протяжении половины периода, когда потенциал полупров р-типа полож, ток свободн проходит через

р-n переход. В следущ половину периода ток равен нулю. В полупр диоде катодом служит германий, а анодом – индий. Полупр диод имеет целый ряд преимуществ перед электронными двухэлектродными лампами (экономия энергии для получения системой тока, миниатюрность, высокая надежность и большой срок службы). Недостатком полупр диодов явл ограниченный интервал температур, в котором они работают (приблизительно от -70 до +125˚С).

Билет 24

При норм услов газы явл диэлектриками, то есть не проводят эл ток. Это доказыв опыт с электрометром и дисками плоского конденсатора. Если спичкой нагреть воздух между дисками то конденсатор разряжается. Следов нагретый газ является проводн и в нем устанавливается эл ток. Газ также становится проводящим если его облучить ультрафиолетом, рентгеном и др лучами. Процесс протекания эл тока через газ наз газовым разрядом. При нагрев или облуч часть атомов ионизируется – распадается на положит заряженн ионы и электроны. В газе могут образовываться и отрицательные ионы, кот появл благодаря присоединению электронов к нейтральным атомам. Ионизация газов при нагрев объясн тем что по мере нагрев молекулы движутся быстрее. При этом некоторые сталкиваются и распадаются, превращаясь в ионы. Чем выше t тем больше образ ионов. Рекомбинация – при прекращении эл тока, электрон и положительно заряженн ион могут вновь образовать нейтральный атом. Если действие ионизатора прекратить, то прекратится и разряд, т.к. других источн ионов нет. По этой причине разряд наз несамостоятельным. Если продолжать увеличивать разность потенциалов на электроде, то число ионов возникающих в процессе разряда может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Так как разряд не нуждается для своего поддержания во внешнем ионизаторе, его наз самостоятельным. Эл ток в газе – это направленное движение полож и отриц ионов и электронов.

Билет 25

В зависимости от свойств и состояния газа, а также от характера и расположения электродов и приложенного к электродам напряжения возник различн виды самостоят разряда в газах. Тлеющий разряд образ при низких давлениях в трубке. Для возбуждения тлеющ разряда достаточно напряжения в несколько сотен вольт. При тлеющ разряде почти вся трубка, за исключ небольшого участка возле катода, заполнена однородн свечением, называемым положительн столбом. Тлеющ разряд примен в трубках для свечения реклам. Красное свечение возник при наполнении трубки неоном. Синевато – зеленоватый при аргоне. В лампах дневн света использ разряд в парах ртути. Эл дуга: при соприкосновении двух угольн стержней в месте их контакта из-за большого сопротивл выдел большое кол-во теплоты. Темпер повышается настолько, что начинается термоэлектр эмиссия. Вследствие этого при раздвижении угольных электродов между ними начинается разряд. Между углями возникает столб ярко светящ газа – эл дуга. Проводимость газа в этом случае значительна и при атмосф давлении, т.к. число электронов, испускаемых отриц электродом, очень велико. Сила тока в небольш дуге достигает нескольких ампер, а в больших дугах – нескольких сотен ампер при напряжении порядка 50В. Эл дуга может возник не только между угольными, но и между металл электродами. Если увеличивать силу тока при тлеющем разряде, то температ катода за счет бомбардировки ионами увеличится настолько, что начнется дуговой разряд. Таким образом, для возникнов дугового разряда не обязательно предварительное сближение электродов. Дуговой разряд -–мощн источн света, его используют в прожекторах, проекционных аппаратах и киноаппаратах. Коронный разряд: при атмосф давлении вблизи заостренных участков проводн, несущего большой эл заряд, наблюдается газовый разряд, светящаяся часть которого напоминает корону. Коронн разряд вызывается высокой напряженностью эл поля вблизи заряженного острия. При такой больш напряженности поля ионизация посредством электронного удара происх при атмосф давл. По мере удаления от поверхн проводн напряженность быстр убыв. Поэтому ионизация и связанное с ней свечение газа наблюд в ограниченн области пространства. При большом напряж между электродами в воздухе возник искровой разряд, имеющий вид пучка ярких зигзагообразных полосок, разветвляющихся от тонкого канала. Этот вид разряда возник тогда, когда мощность источн тока недостаточна для поддержания дугового или тлеющего разряда. Пример гигантского искрового разряда – молния, возникающая между 2 облаками или облаком и землей. Сила тока в молнии достигает 500 000 А, а разность потенциалов между облаком и землей – 1млрд.В. Плазма – это частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически совпадает. Плазма – электрически нейтральная система

Билет 7

Кристаллы – это твердые тела, атомы или молекулы которых занимают определенные, упорядоченные положения в пространстве. Кристаллы по - разному проводят теплоту и ток в различных направлениях. От направления зависят и оптические свойства кристаллов. Анизотропия – зависимость физических свойств от направления внутри кристалла. Различаются четыре типа кристаллической решетки: 1). Ионные кристаллы – большинство неорганических соединений, например соли, окиси металлов; 2). Атомные кристаллы – кристаллические решетки полупроводников, многие органические твердые тела; 3). Молекулярные кристаллы – бром, метан, нафталин, парафин, многие твердые органические соединения; 4). Металлические кристаллы – металлы. Твердое тело, состоящее из большого числа маленьких кристаллов, называют поликристаллическими. Одиночные кристаллы называют монокристаллами. Аморфные тела не имеют определенной формы в своей структуре строения атома или молекулы, не имеют кристаллической решетки, обладают свойством изотропии. Изотропия – это свойство одинаково передавать тепло, электрический ток по всем направлениям одинаково. Определенной температуры плавления у аморфных тел нет. Аморфные тела при низких температурах по своим свойствам напоминают твердые тела. Упругость – это деформация, которая полностью исчезает после прекращения действия внешних сил. Модуль упругости или модуль Юнга – это коэффициент пропорциональности Е, входящий в закон Гука : =Е| |. Предел упругости - максимальное напряжение, при котором еще не возникают заметные остаточные деформации (0,1%). Прочностью материала называется его свойство выдерживать действия внешних сил без разрушения. Пределом прочности называется механическое напряжение, которому соответствует наибольшая выдерживаемая телом нагрузка перед разрушением его кристаллической структуры. Запасом прочности называется число, показывающее, во сколько раз предел прочности больше допускаемого напряжения. Пластичными называют материалы, у которых незначительные нагрузки вызывают пластические деформации (глина, песок). Деление материалов на упругие и пластичные в значительной мере условно. Получение материалов с заданными механическими, магнитными, электрическими и др. свойствами – одно из основных направлений современной физики твердого тела. Теоретические исследования приводят к созданию твердых тел, св-ва которых совершенно необычны.