Смекни!
smekni.com

Кристаллизация, структурно-химическое модифицирование и адсорбционные свойства цеолитов. (физхимия) (стр. 3 из 3)

Рисунок на 53 странице в - Жданов С.П., Хвощев С.С., Самулевич Н.Н. Синтетические цеолиты. М.:Химия. 1981. 264с.

Рис.4. Области кристаллизации цеолитов в системе Na2O-

-Al2O3-SiO2-H2O на диаграмме составов.

Содержание воды 80-85% (масс.), t=90°с для всех цеолитов кроме морденита. Обозначения: A - Na-A; X - Na-X; В - Na-филипсит; Y - Na-Y; E - Na шабазит; М - Na-морденит; S - основной сосдалит.

Данные рис.4. могут быть использованы для выбора условий воспроизводимого синтеза всех приведенных на этом рисунке Na-цеолитов, несмотря на то, что в большинстве случаев получающиеся цеолиты являются метастабильными фазами.

Однако некоторые Na-цеолиты (например, Na-морденит) не могут быть синтезированы из силикаалюмогелей, получаемых смешением силикатных и алюминатных растворов. Высококремнеземный синтетический фожазит (цеолит Na-Y) в принципе может быть получен из таких силикаалюмогелей, но кристализуется не воспроизводимо и не в виде чистой фазы. Поэтому при синтезе этих высококремнеземных натриевых цеолитов используются другие источники SiO2 (золи SiO2). При применении затравок синтез цеолита Na-Y может быть легко осуществлен и из алюмосиликатных гелей. В качестве таких затравок могут быть применены кристаллы цеолита Na-X и даже гели (аморфные затравки)

Состав алюмокислородного каркаса цеолитов одного и того же структурного типа в значительной степени определяет их свойства. Во многих случаях отношение Si/Al в однотипных кристаллах синтетических цеолитов может изменяться в сравнительно широких пределах. Типичными примерами такого рода являются синтетические фожазиты (цеолиты X и Y), синтетические калиевые шабазиты (цеолиты G), синтетические анальцимы.

Таблица 5

Стабильность цеолитов разных типов в кислотах

Цеолит SiO2/Al2O3 Устойчивость к кислотам
NaA 2 Растворяется при pH<5
NaX 2,4-2,7 То же
NaY До 3,5

Разрушается в 3 н. уксусной

кислоте

NaY 4,0-5,9

Мало разрушается в 3 н.

уксусной кислоте

NaЭ 6 То же
NaM 10

Не разрушается в 3 н.

соляной кислоте

Регулирование состава кремнеалюмокислородного каркаса цеолитов одного и того же структурного типа может осуществляться путем изменения состава исходных алюмосиликатных смесей и силикатных и алюминатных растворов в пределах поля кристаллизации данного цеолита.

Чем больше соотношение SiO2/Al2O3в цеолитах, тем он более устойчивее к воздействию кислот. В таблице 5 приведена стабильность цеолитов разных типов по отношению к кислотам.

При обработке цеолитов сильными кислотами образовываются гели. Так , например под действием соляной кислоты цеолиты натриевой формы A и X легко разлагаются, и при этои осаждается светлый гель. Морденит устойчив даже к сильным кислотам, при его обработке удаляются только катионы, образуется водородная форма морденита.

Что касается варьирования дисперсности кристаллов, то это возможно делать в ограниченных пределах путем изменения состава исходных алюмосиликатных смесей или силикаалюмогелей. Повышение щелочности гелей приводит к интенсификации процесса зародышеобразования в гелях и к получению более мелких кристаллов. Однако регулирование размеров кристаллов путем изменения щелочности гелей не всегда применимо, поскольку вместе с изменением содержания щелочи может измениться и сама природа кристализующихся фаз.

Большие возможности для регулирования дисперсности кристаллов имеет метод старения гелей, позволяющий в определенных случаях варьировать размеры кристаллов цеолитов одного и того же структурного типа в широких пределах. При увеличении длительности периода старения одного и того же геля размер кристаллов цеолита уменьшается.

Однако хотя методом старения можно легко регулировать размеры кристаллов цеолитов, кристализующихся из одного и того же геля (что важно для разных целей, в том числе и практических), этот метод не позволяет получать крупные монокристаллы, так как старение всегда приводит лишь к уменьшению размеров кристаллов.

Необходимо иметь ввиду, что в некоторых случаях возникает задача синтеза крупных монокристаллов цеолитов. Значительные успехи были достигнуты в области выращивания кристаллов цеолитов типа содалита [6]. Однако выращивание совершенных и достаточно больших монокристаллов других цеолитов все еще остается не решенной задачей.

Варьирование адсорбционных свойств цеолитов

Подытоживая все вышесказанное перечислим основные способы регулирования избирательной адсорбционной способности цеолитов.

1. Изменение состава в процессе кристаллизации. Из одних и тех же исходных веществ можно получить алюмосиликатные пористые кристаллы, обладающие разными свойствами. Так, например, цеолит типа А образуется из смесей, богатых щелочами и бедных кремнеземом, а цеолит типа Y кристаллизуется в области с наименьшей щелочностью среды и наибольшей концентрацией кремнезема.

2. Способ ионного обмена. Ионным обменом можно регулировать молекулярно-ситовые свойства, особенно типа А. Зная размеры адсорбируемых молекул и окон цеолита, можно подбирать определенную катионообменную форму цеолита для разделения любой смеси газов или растворенных газов. Так, например, цеолит, КА, у которого размер окон равен примерно 3 Å, адсорбирует хорошо воду, воду но не адсорбирует молекулы метанола, двуокиси углерода, критический диаметр молекул которых больше 3 Å. Цеолит NaA у которого рамер окон равен 4 Å, адсорбирует метанол, двуокись углерода и не адсорбтрует молекулы пропана, гексана и другие молекулы, критический диаметр которых выше 4 Å. На цеолите CaX, у которого размер окон равен 8 Å, молекулы 1,3,5-триэтилбензола не адсорбируются, а на цеолите NaX (размер окон 9 Å) они хорошо адсорбируются.

Цеолиты обладают также ионоситовым действием. Так, например, натрий в цеолите типа X нельзя обменять на катионы алкиламония в связи с большим размером последних. Катионно-ситовые эффекты в цеолитах могут быть вызваны и тем, что из-за слишком большого размера катион не может проникать в малые каналы и полости в каркасе цеолита или же, обменные катионы в процессе синтеза некоторых цеолитов локализуются в недоступных для обмена участках и поэтому не замещаются.

3. Введение в кристалл цеолита легко поглощаемых примесей, обычно небольших полярных молекул. Эти модифицирующие молекулы фиксируются прежде всего у входных окон, через которые должны диффундировать молекулы адсорбата, и создают препятствия их продвижению. Так, например, предсорбция небольших количеств паров воды на цеолите типа А резко уменьшает адсорбцию кислорода. Эффективные диаметры окон можно регулировать, образуя металлоорганические комплексы. Так, при обработке пиридином медной формы цеолита X образуется весьма прочный комплекс пиридин катион. Адсорбция молекул газов и паров на таком цеолите указывает на значительное уменьшение размеров пор вследствие их блокирования металлоорганическими комплексами.

4. Особое место среди катионзамещенных цеолитов занимают водородные, или декатионированные, формы цеолитов. Замещение катионов цеолита водородом является одним из способов модифицирования пористых кристаллов. Водородная форма цеолитов в отличие от других форм не может быть получена простой обработкой цеолита кислотами, т.к. последние разрушают кристаллическую решетку, особенно низкокремнеземных цеолитов. Поэтому вначале ионы натрия замещаются на ионы аммония, затем последний термически разлагают, при этом выделяется аммиак и образуется протон, который обеспечивает электронейтральность решетки цеолита.

5. Одним из методов модифицирования цеолитов является деалюминирование. Обработка цеолита кислотами приводит к растворению тетраэдрического алюминия в решетке. В результате увеличивается адсорбционная емкость цеолита. Деалюминирование можно осуществлять также обработкой цеолита веществами, образующими с ионами алюминия комплексные соединения, или обработкой слоя цеолита парами воды при повышенных температурах [7]. Деалюминирование позволяет в определенных пределах варьировать соотношение кремне- и алюмокислородных тетраэдров в цеолите без изменения его кристаллической решетки.

Избирательная адсорбция на цеолитах возможна и тогда, когда молекулы всех компонентов смеси достаточно малы и свободно проникают в адсорбционное пространство. При прочих равных условиях обменные катионы являются адсорбционными центрами и определяют специфику взаимодействия при адсорбции на цеолитах молекул разного строения и электронной структуры. Меняя природу и размер обменного катиона, можно усилить или ослабить вклад специфического взаимодействия в энергию адсорбции. Кроме взаимодействия с положительным зарядом катионов, молекула адсорбата испытывает сильное дисперсионное воздействие со стороны других атомов, образующих стенки каналов цеолита. Один из важных вопросов адсорбционного взаимодействия на цеолитах - выяснение природы активных центров.


Список использованной литературы

1. 1. Брек Д. Цеолитные молекулярные сита. М.:Мир. 1976. 781с.

2. 2. Рабо Дж. Химия цеолитов и катализ на цеолитах. М.:Мир.1980. Т1. 502с.

3. 3. Жданов С.П., Хвощев С.С., Самулевич Н.Н. Синтетические цеолиты. М.:Химия. 1981. 264с.

4. 4. Сендеров Э.Э., Хитаров Н.И. Цеолиты, их синтез и условия образования в природе. М.:Наука. 1970. 395с.

5. 5. Мирский Я. В., Пирожков В.В. Адсорбенты, их получение свойства, и применение. Л.:Наука. 1971. с.26

6. 6. Мельников О.К., Лобачев А.Н. и др. Рост кристаллов из высокотемпературных водных растворов. М.:Наука. 1977. с.5.

7. 7. Неймарк И.Е. Синтетические минеральные адсорбенты и носители катализаторов. Киев: Наук. думка. 1982. 216с.