При таком, сравнении получим, что
Очевидно не существует действительного угла
Поэтому, как следствие вышеприведенных соотношений, получаем формулы
Данные соотношения разрешимы, так как, согласно им,
Как видим, значение мнимого угла
Тогда формулы преобразования Лоренца примут вид
Это формулы так называемого гиперболического поворота- Поясним геометрию такого поворота. Рассмотрим плоскость
4.1.5. Релятивистская механика материальной точки
Приняв гипотезу о едином четырехмерном пространстве-времени, или четырехмерном мире, мы должны пересмотреть классическую механику Ньютона, исправить ее, сделав инвариантной не относительно преобразований Галилея, а относительно преобразований Лоренца. Такую программу пересмотра динамики материальной точки в классической механике выполнил Минковский, создавший релятивистскую динамику материальной точки.
Чтобы перейти в обычном трехмерном пространстве к геометрически естественным величинам (не зависящим от выбора системы декартовых координат, как координаты точки или компоненты вектора), вводят понятия трехмерных векторов а, b и т.д. и операции над этимивекторами, в частности длина вектора а равна
В четырехмерном мире для мгновенного точечного события М с координатами x,y,z,tв некоторой инерциальной системе отсчета можно ввести "4-радиус-вектор"c компонентами
Мгновенной скорость материальной точки
четырехмерном мире ввел релятивистски инвариантную "4-скорость", которая имеет компоненты
где v - обычная мгновенная скорость материальной точки. Так что
Аналогичным образом релятивистски инвариантное "4-ускорение " Минковский определил следующим образом:
Основные уравнения релятивистской динамики материальной точки в релятивистской механике Минковский записал следующим образом:
где
Покажем теперь, как уравнения Минковского релятивистской динамики материальной точки связаны с обычными уравнениями Ньютона для материальной точки. Прежде всего очевидно, что
так что
т.е. 4-скорость всегда имеет постоянную величину, чисто мнимую, по модулю равную с.
Используя найденные формулы для компонент 4-скорости и формулу для дифференциала собственного времени, имеем следующие
уравнения движения:
Три уравнения, в которые входят
а импульс движущейся материальной точки определяется формулой
где v - вектор мгновенной скорости материальной точки.
Четвертое уравнение, в которое входит
Отсюда можно найти
где
и потому рассматриваемое четвертое уравнение примет вид :
Таким образом, величину
следует считать энергией движущейся материальной точки. Если
Второе слагаемое есть классическая кинетическая энергия материальной точки
а первое слагаемое - так называемая "энергия покоя". Кинетической энергией материальной точки в релятивистской механике называют величину