Технически такое сложение осуществляется с помощью зонной пластинки. Она представляет собой систему непрозрачных концентрических колец, которые закрывают, например, нечетные зоны Френеля. Амплитуда колебаний в точке наблюдения при использовании такой пластинки сильно возрастает.
Зонная пластинка действует в этом случае подобно линзе, которая фокусирует свет в некоторой точке. Соответственно, для зонной пластинки может быть введено фокусное расстояние. На рисунке показана зонная пластинка, закрывающая нечетные зоны Френеля. Разность хода нарисованных лучей равна l, и амплитуда колебаний от открытых зон при одинаковых знаках складываются по модулю. Поэтому и получается большая интенсивность колебаний в точке наблюдения, фокусировка лучей.
зоны Френеля: 6 4 2 P b |
Следующим шагом в своего рода совершенствовании зонной пластинки является превращение ее в прозрачную фазовую зонную пластинку. Вместо того, чтобы закрывать, например, нечетные зоны Френеля, мы можем изменять на p фазу приходящих от них колебаний. Тогда амплитуда колебаний в точке наблюдения примерно удвоится. Чтобы достигнуть этого, необходимо изменить для них оптическую длину пут на половину длинны волны, обеспечить выполнение условия , где d - толщина фазовой пластины из материала с показателем преломления n.
10.3. Линза как дифракционный прибор
Фазовая пластинка представляется удивительным прибором. Ее способность фокусировать лучи основана на том, что она изменяет на pфазу колебаний от, например, четных зон Френеля E2k. В отсутствии пластинки эти колебания противоположны по фазе колебаниям от нечетных зон E2k-1, противоположны им по знаку. Естественно, суммарная амплитуда сильно увеличивается, происходит фокусировка. Но у нас имеется еще одна и еще более мощная возможность увеличить амплитуду колебаний - выпрямить сами дуги спирали и вместо хорд складывать длины этих дуг.
d 1 2 DL=rq/2 q»r/f r f F d0 |
Приходящие от элементарных колечек в пределах некоторой зоны Френеля колебания имеют различные фазы, что и проявляется в скручивании элементарных векторов на векторной диаграмме в дугу. Если же обеспечить нужное плавноеизменение фазы колебаний в пределах отверстия, можно добиться желаемого результата - синфазности колебаний от всех элементарных колечек. Собственно, это и обеспечивается линзой при фокусировке лучей.
Действительно, лучи 1 и 2 проходят одинаковые геометрические пути, но один из них проходит путь d в материале с показателем преломления n. В результате на этом участке он проходит больший оптический путь, появляется оптическая разность хода .
Рассмотрим теперь прохождение луча света через плоско-выпуклую линзу из материала с показателем преломления n. Луч от отмеченной пунктиром плоскости до выпуклой поверхности линзы проходит путь и в материале линзы . Таким образом, на этом участке оптическая длина пути будет . С другой стороны от края колечка на плоской стороне линзы до фокуса луч пройдет путь . Чтобы в фокусе колебания волн, проходящих по путям всех лучей, складывались, необходимо, чтобы этот путь на зависел от радиуса колечка:
;
.
Мы получили прежнее выражение для фокуса линзы, но на этот раз исходя их требования синфазности колебаний волн, приходящих в некоторую точку наблюдения, которая называется фокусом.
10.4. Пятно Пуассона
ES |
С помощью спирали Френеля можно получить еще один замечательный результат. Действительно, если на пути сферической волны находится непрозрачное круглое отверстие (любого размера), то оказывается закрытым какое-то число внутренних зон Френеля. Но вклад в колебания в точке наблюдения, находящегося в центре геометрической тени, будут давать остальные зоны. В результате в этой точке должен наблюдаться свет.
Этот результат показался в свое время Пуассону столь невероятным, что он выдвинул его как возражение против рассуждений и расчетов Френеля при рассмотрении дифракции. Однако, когда был проведен соответствующий опыт, такое светлое пятнышко в центра геометрической тени было обнаружено. С тех пор оно носит название пятна Пуассона, хотя он не допускал и самой возможности его существования.
Лекция 13
11.1. Свет поляризованный и неполяризованный.
Закон Малюса
До сих пор при исследовании дифракции или интерференции мы занимались волнами без учета их поляризации. Можно сказать, что в случае волн поперечных, мы считали их поляризованными одинаково. Только в этом случае с помощью векторной диаграммы можно складывать амплитуды колебаний, т.е. в случае, если они происходят по одному направлению.
Теперь нам нужно сосредоточиться на поперечных волнах, при сложении которых может оказаться существенной поляризация волны.
Поляризация определяется тем, как направлен, например, вектор электрического поля в плоскости, перпендикулярной к направлению распространения волны.
Вектор перпендикулярен направлению распространения волны, но это направление может тем или иным способом изменяться. Свет называют поляризованным, если наблюдается некоторая регулярность такого изменения.
В естественном свете это направление изменяется случайным образом. Такой свет называют неполяризованным.
анализатор o’ o фотоприемник |
Каким образом можно судить о поляризованности света? Имеются приборы, которые пропускают только свет с определенным направлением вектора (в зависимости от назначения их называют поляризаторами или анализаторами). Если свет неполяризован, то при повороте анализатора вокруг горизонтальной оси интенсивность света, воспринимаемого фотоприемником, не изменяется: амплитуда колебаний электрического вектора остается неизменной.
Кроме света неполяризованного выделяют частично поляризованный свет. В этом случае направление вектора электрического поля также изменяется хаотически, но имеется некоторое направление, при котором в среднем амплитуда колебаний больше. Для такого случая вводится понятие степени поляризации: вращая анализатор, определяют значения максимальной и минимальной интенсивности, воспринимаемой фотоприемником. Степень поляризации определяется выражением: