Смекни!
smekni.com

Лекции по физике (стр. 5 из 24)

Итак, рассмотрим падение плоской волны на круглое отверстие и проанализируем, как зависит от радиуса отверстия амплитуда суммарных колебаний в точке наблюдения.

L
r q=r/bq/2 b P

Из рисунка видно, что разность хода лучей от края кольца радиуса r и от центра отверстия

.

Поэтому от кольца с радиусом r колебания будут приходить с запаздыванием по фазе на

.

С помощью векторной диаграммы мы будем складывать колебания, приходящие в точку наблюдения от тонких колечек толщиной Dr. Соответствующие векторы на фазовой диаграмме будут повернуты по отношению друг к другу на угол

j=p
Dj

.

При достаточно большом радиусе будет

.

Соответствующий радиус r1называется (внешним) радиусом первой зоны Френеля. При дальнейшем увеличении радиуса, естественно, величина j будет увеличиваться. Из условия j=kp мы получаем выражение для радиуса k-й зоны Френеля:

;
.

E0

Мы уже достаточно много работали с векторными диаграммами, и должно быть понятно, что при дальнейшем увеличении радиуса отверстия (по сравнению с r1) амплитуда суммарных колебаний в точке наблюдения, пропорциональная длине отрезка (вектора), соединяющего начало и конец дуги, будет уменьшаться. Она достигнет минимума, когда радиус отверстия достигнет внешнего радиуса второй зоны Френеля. Но в отличии от задачи о колебаниях волны, излучаемой щелью при дифракции Фраунгофера, дуга не замкнется в окружность, мы получим некоторую скручивающуюся спираль. Длина вектора, проведенного от начала к центру спирали, дает, очевидно, амплитуду падающей волны - скручивание спирали к центру соответствует бесконечно большому радиуса отверстия, когда дифракция не наблюдается.

Подобная спираль, которую называют спиралью Френеля, получается и в том случае, когда на отверстие падает сферическая волна конечного радиуса a.Выражение для радиусов зон Френеля в этом случае, естественно, иное.

a S r b P

На рисунке a - радиус фронта волны, b - расстояние от фронта до точки наблюдения P. Таким образом, расстояние от источника света S до точки наблюдения вдоль оси равно (a+b).

Подсчитаем теперь длину некоторого произвольного луча. Как и раньше, рассматриваем лишь параксиальные лучи. При таком ограничении наши выражения будут приближенными.

Нижний катет прямоугольного треугольника, образованного радиусом фронта a, осью системы и радиусом r некоторого кольца на фронте волны, будет равен

.

Расстояние от источника света до края кольца и от него до точки наблюдения будет равен

.

При преобразованиях мы пренебрегли слагаемым с четвертой степенью r и воспользовались приближенным равенством

.

Таким образом, разность хода “прямого” луча от S к точке наблюдения P и луча, проходящего через край кольца радиуса r

,

и разность фаз колебаний волн, проходящим по этим путям,

.

Наконец, из условия

получаем для внешнего радиуса k-й зоны Френеля выражение:

.

Естественно, при a ®¥ это выражение переходит в полученное нами ранее выражение для случая падения на отверстие плоской волны.

10.2. Обсуждение полученных результатов.

Зонная пластинка

Попробуем разобраться, к каким эффектам приводит дифракция на круглом отверстии. При этом не будем ни на минуту забывать, что спираль Френеля состоит из элементарных векторов, которые, соответственно, представляют колебания от элементарных колечек круглого фронта падающей волны. Вся спираль представляет колебания от полностью открытого фронта (k ®¥), если открыта часть зон Френеля, “реализуется” лишь часть спирали. Амплитуда суммарных колебаний представляется длиной вектора, соединяющего начало спирали и ее конец.

0,5 1 1,5 2 2,5
E0

Проиллюстрируем эти слова. На рисунке показаны случаи, когда открыта половина первой зоны, первая зона, полторы зона, две и две с половиной. Иначе говоря, когда радиус круглого отверстия равен радиусу половине первой зоны Френеля, радиусу первой зоны и т.д.

1 2 3 4 5
...

;
;
;

Витки спирали для первых зон Френеля им будем считать окружностями. Поэтому на рисунке выписаны такие значения амплитуды суммарных колебаний E. Подсчет амплитуд колебаний производится приближенно, но для нас важно понимание причин изменения амплитуд при изменении радиуса отверстия, хотя бы и за счет некоторого снижения точности.

При суммировании амплитуд колебаний от первой, второй и т.д. зон Френеля мы должны получить амплитуду E0. Но если бы мы складывали только колебания от четных или только от нечетных зон Френеля, мы получили бы колебания с амплитудой, модуль которой намного превосходит величину E0. Действительно, вместо суммы членов знакопеременного ряда мы бы тогда складывали значения E одного знака.