19.3. Парадокс Больцмана
Создается впечатление, что квантовая физика описывает процессы “приблизительно”, не давая точных и однозначных ответов на некоторые вопросы. В.Вайскопф относит себя к старым противникам такого утверждения. Он считает, что как раз квантовая физика привнесла в науку о природе большую точностью
Главное, что квантовая физика сняла много вопросов, остававшихся без ответа в рамках классических представлений. Одна из решенных квантовой физикой задач - это разрешение парадокса Больцмана, о котором вспоминают не слишком часто:
“... согласно классической механике, мы предполагаем, что в системе атомов, находящейся в тепловом равновесии при данной температуре, тепловая энергия должна быть равномерно распределена среди всех возможных видов движения. В куске нагретого вещества электроны должны вращаться быстрее, протоны внутри ядер должны колебаться более энергично, составные части протонов должны колебаться более энергично в пределах своих границ и т.д. Таким образом, удельная теплоемкость любого простого куска вещества должна быть чрезвычайно велика. В действительности же удельная теплоемкость имеет именно такое значение, которое можно получить, рассматривая только внешнее движение атомов. Было непонятно, почему тепловая энергия не проникает внутрь атома и не возбуждает его внутренние степени свободы. Парадокс Больцмана был сформулирован в 1892 г., задолго до создания квантовой механики. Но объяснения ему не было.” [11][2]
Особенно остро сформулированная в парадоксе Больцмана проблема проявилась при анализе равновесного теплового излучения, когда создалась ситуация, получившая название “ультрафиолетовой катастрофы”. Квантование энергии стоячих волн снимает проблему и приводит к результатам, великолепно совпадающим с результатами эксперимента.
В этом главное: появившиеся в поле зрения физиков новые объекты - кванты, при всем их разнообразии, обладают одним общим свойством, не характерным для классических макрообъектов: они не могут быть разделены на части, за поведением которых нам хотелось бы проследить. И это фундаментальное их свойство:
“Одной из главных особенностей классической физики является возможность делить каждый процесс на составные части. Любой физический процесс можно считать состоящим из последовательности составляющих его процессов. По крайней мере теоретически каждый процесс можно проследить шаг за шагом во времени и в пространстве. Орбиту электрона вокруг ядра можно представить в виде последовательности малых перемещений. Электрон можно считать состоящим из частей с меньшими зарядами. Но эту точку зрения следует отбросить, если мы хотим понять, что видим в природе...” [12][3]
И к этому утверждению “примыкает” такое:
“Здесь мы сталкиваемся с весьма важным фактом, заключающимся в том, что указанная невозможность выполнения некоторых измерений означает больше, чем простое техническое ограничение, которое в один прекрасный день может быть преодолено с помощью хитроумного оборудования.” [13][4]
Коротко это звучит так. Квантовые объекты - это по своей природе неделимые объекты. Его состояние можно изменить, но выделить какую-то его часть нельзя.
19.4. Химические элементы
Другая проблема, которую не могла решить классическая физика, это существование атомов химических элементов с определенными свойствами. Принятая после опытов Резерфорда планетарная модель атома в рамках классических представлений оказалась неприемлемой.
Прежде всего, электрон при ускоренном движении по орбите (центростремительное ускорение!) должен терять энергию, излучая электромагнитную волну. Кроме того, в рамках классических представлений невозможно объяснить, почему атом меди, например, всегда остается атомом меди независимо от того, каким способом, где и когда была получена медь.
Звездные системы со своими планетами, которые дали название принятой в физике модели атома, обязательно различны. И не удивительно - движение планет описывается классической физикой. Так почему атомы, образованные квантовыми объектами, идентичны? Ответ, мне кажется, достаточно ясен:
“Во многих отношениях электронные орбиты демонстрируют поразительное сходство с волновыми колебаниями, локализованными в пределах атома. Например, волна, ограниченная определенным объемом, т.е. стоячая волна, может иметь только определенное число конфигураций... Эти конфигурации вполне определенны и имеют простые симметричные структуры - факт, известный из наблюдения других стоячих волн, например, колебаний скрипичной струны или волн в воздушном столбе органной трубы. Они обладают свойством «восстановления»; если возмущающий эффект изменил их форму, первичная конфигурация волн восстанавливается, когда действие возмущения прекращается.” [14][5]
Итак, стабильность атома обеспечивается волновыми свойствами электронов. Но для понимания квантовых объектов важно еще понимание того, что определенной конфигурации стоячей электронной волны отвечает определенная энергия. Мы это видели на примере бесконечно глубокой одномерной потенциальной ямы.
В то же время следует знать и помнить, что уравнением Шрёдингера описываются отнюдь не все свойства электрона. Например, в нем отсутствует спин. И уж никак из этого уравнения не следует принцип Паули, согласно которому в атоме может быть лишь два электрона с некоторой определенной конфигурацией стоячей волны.
Эти конфигурации характеризуются набором квантовых чисел. Поэтому применительно к атому принцип Паули формулируется так: в атоме может существовать лишь два электрона с одинаковым набором квантовых чисел, различающиеся знаком спина. Если спиновое квантовое число ввести в общий набор квантовых чисел, формулировка принципа Паули становится более лаконичной: каждый электрон в атоме должен иметь свой набор квантовых чисел.
Здесь, видимо, вновь следует обратиться к вопросу о “понятности” свойств квантового объекта, в частности, электрона. Мы не можем дать какого-то объяснения принципу Паули, равно как волновой природе квантового объекта, как, впрочем, и “понятному” закону сохранения энергии, например. Все это лишь констатация свойств природы, выясненных в результате наблюдений и экспериментов. Мы не придумываем природу, мы ее изучаем.
19.5. Нормирование волновой функции
Уравнением Шрёдингера волновая функция определяется с точностью до постоянного множителя. Этот множитель определяется с помощью условия нормировки
.
Размерность амплитуды Y-функции оказывается, таким образом, обратно пропорциональной объему и квадрат ее модуля называют плотностью вероятности обнаружения, например, электрона в некоторой области пространства. Оставим условие нормировки и терминологию такими, но обдумаем их смысл. Заранее оговорюсь, что понимать все это буквально не следует.
Во-первых, само слово “обнаружить” электрон в некоторой области пространства приемлемо лишь в том случае, если мы считаем, что он в момент обнаружения там находится. Нельзя обнаружить то, чего нет. В действительности дело обстоит, мягко говоря, не так.
Пусть электрон локализован в некотором более или менее строго очерченном объеме DV. Далее предположим, что в результате некоторых наших действий он оказался локализован (“обнаружен”) в объеме dV < DV. Это автоматически означает увеличение его энергии, изменение квантового состояния. Это уже не тот электрон (не в том состоянии), который мы имели до “обнаружения”. Измерение, уточнение значений его координат “уничтожает условия существования квантового состояния” (ссылка 1).
Обратимся вновь к модельной задаче о состоянии электрона в бесконечно глубокой одномерной потенциальной яме.” В этом случае (задача одномерная) условие нормировки принимает вид:
0 XDx l |
.
При этом минимальная энергия электрона
.
При “обнаружении” электрона в интервале Dx минимальная его энергия возрастет до
.
Вот как обстоят дела при “обнаружении” электрона в некоторой области пространства: при этом увеличивается его энергия. Обнаружение же электрона “в точке” просто бессмысленно, поскольку это означало бы бесконечное увеличение его энергии. Вот мнение В.Вайскопфа по этому поводу:
“Волновая природа атомного электрона связана с неделимостью, целостностью атомного состояния. Если выделить часть процесса и затем пытаться установить более точно, действительно ли электрон находится внутри этой волны, его можно обнаружить там как реальную частицу, но при этом нарушится деликатная индивидуальность квантового состояния. Однако именно волновая природа обусловливает характерные особенности квантового состояния - его простую геометрию, восстановление первоначальной формы после окончания действия возмущения, короче говоря, специфические свойства атома. Великим открытием квантовой физики явилось обнаружение существования этих индивидуальных квантовых состояний, каждое из которых представляет собой единое целое, пока не подвергается воздействию средств наблюдения. Любая попытка наблюдать выделенную часть состояния связана с использованием столь высокой энергии, что при этом разрушается хрупкая структура квантового состояния.