Смекни!
smekni.com

Лекции по физике (стр. 18 из 24)

И тем не менее, предлагаемый способ объяснения результатов опыта на основе гипотезы о распространении элекиромагнитного излучения в виде фотонов очень удобен и нет никаких оснований от него отказываться.

16.2. Энергетические соотношения

При облучении быстрыми электронами некоторых веществ наблюдается коротковолновое электромагнитное излучение (

). Это излучение получило название рентгеновских лучей.

к ц антикатод- +

Устройство рентгеновской трубки показано на рисунке. Вылетающие из раскаленного катода электроны разгоняются приложенным к аноду напряжением (анод рентгеновской трубки обычно называют антикатодом). Электрод в виде цилиндра предназначается для фокусировки пучка электронов.

Ускоренные приложенным к антикатоду напряжением электроны тормозятся в антикатоде, и в результате возникает так называемое тормозное рентгеновское излучение. Обычно в излучение превращается лишь незначительная часть энергии потока электронов (единицы процентов). Чтобы получить достаточно интенсивное излучение необходимо отводить от антикатода выделяющееся тепло. Сам антикатод по этой же причине делается достаточно массивным.

Детали процесса излучения электромагнитной волны при торможении быстрых электронов весьма сложны и не представляют для нас особого интереса. Рентгеновское излучение интересно для нас тем, что в этом процессе наблюдается так называемая коротковолновая граница излучения. В виде кванта может реализоваться часть энергии электрона, но не более самой этой энергии. Если напряжение на трубке равно U, то

.

Таким образом, имеется некоторая предельно большая частота или некоторая предельно малая длина волны - коротковолновая граница излучения.

С использованием понятия фотона объяснение этого эффекта оказывается очень естественным: при взаимодействии быстрого электрона с веществом антикатода рождается частица, называемая фотоном, энергия которого ћw и, это кажется вполне естественным, она не может быть больше энергии электрона eU.

G+ - (-)(+)

В определенном смысле обратным излучению рентгеновских лучей является фотоэффект. В этом случае на некоторой поверхности происходит поглощение квантов света (фотонов), в результате чего с поверхности вылетают электроны.

Металлический электрод, подключенный к отрицательному полюсу источника питания, содержит свободные электроны. Они не покидают электрод самопроизвольно, поскольку для этого необходима дополнительная энергия A - так называемая работа выхода. Заметный выход электронов из металла (термоэлектронная эмиссия) наблюдается лишь при достаточно высокой температуре.

При освещении электрода из него вылетают электроны, достигающие затем положительно заряженного электрода - в цепи протекает ток, который фиксируется гальванометром G.

Но ток протекает и при смене полярности напряжения на электродах, хотя при уменьшении разности потенциалов между электродами и, тем более, при смене его знака ток уменьшается.

У вылетающих из электрода электронов энергия (как показывает опыт) не может быть больше энергии фотона ћw. Поэтому

.

Это соотношение называется формулой Эйнштейна.

16.3. Эффект Комптона

Еще одним и, пожалуй, наиболее эффектным проявлением корпускулярных свойств электромагнитного излучения является эффект Комптона. Заключается он в изменении частоты (т.е. энергии) фотона после “упругого столкновения” с электроном. Но прежде, чем перейти к выводу соответствующего выражения, поговорим немного об энергии и импульсе в релятивистской механике.

Выражение для импульса, собственно, остается неизменным, лишь вместо “просто” массы (иначе - массы покоя) в него входит некоторая масса

, зависящая от скорости движения тела:

;

При малой скорости движения

выражение для импульса переходит в “обыкновенное”, используемое в нерелятивистском приближении, масса в нем считается константой.

Несколько сложнее обстоит дело с релятивистским выражением для энергии тела. Здесь вводится понятие энергии покоя m0c2. Собственно, это выражение остается справедливым и при движении тела, только вместо массы покоя m0 записывается масса

:

.

При малой скорости движения

в разложении квадратного корня в знаменателе можно ограничиться первыми двумя членами:

.

Это выражение можно “прочитать” таким образом: при малых скоростях движения энергия тела представляет собой сумму энергии покоя и “обычной” нерелятивистской кинетической энергии.

Для наших целей выражение для кинетической энергии тела удобно записать иначе:

.

Действительно,

Для решения задачи о столкновении фотона и электрона необходимо записать законы сохранения:

;
.

Воспользовавшись соотношением

, преобразуем первое из уравнений:

;
;

;

.

С другой стороны, из закона сохранения импульса получаем:

;
.

Приравняем полученные выражения для квадрата импульса электрона после столкновения и проведем несложные преобразования:

;

;
.

Имеющая размерность длины величина

называется Комптоновской длиной волны электрона. Мы бы не затевали этого разговора, если бы экспериментально определенное значение lC = 0,00243 нм не совпадало с теоретическим значением lC.


Лекция 20

18.4. Стоячая волна

Как и всякая другая волна, электронная волна Y(x,t) может быть стоячей волной. Для этого нам необходимо сложить две волны с одинаковыми амплитудами, движущиеся навстречу друг другу:

.

Волна как волна, с узлами и пучностями, но вместо, скажем, закрепленных концов струны в точках с координатами x=-l/2 и x=+l/2 нам при значениях координат x£-l/2 и x³+l/2 нужно иметь U=¥ - правее и левее выделенного интервала возможно решением будет

. Используя условие непрерывности Y-функции, можно определить значение (комплексной) амплитуды y0.