.
С другой стороны, из закона сохранения импульса получаем:
; .
Приравняем полученные выражения для квадрата импульса электрона после столкновения и проведем несложные преобразования:
;; .
Имеющая размерность длины величина называется Комптоновской длиной волны электрона. Мы бы не затевали этого разговора, если бы экспериментально определенное значение lC = 0,00243 нм не совпадало с теоретическим значением lC.
Лекция 18
15. Фотоны
При подсчете плотности равновесного теплового излучения присвоение каждой степени свободы (стоячей волне) энергии kT приводит к абсурдному результату - бесконечной плотности лучистой энергии. При анализе равновесного теплового излучения потребовался совершенно новый подход - введение квантования энергии в виде “порций” величиной ћw, и количество таких порций определяется распределением Больцмана. Последующие исследования показали, что поглощение или излучение электромагнитной энергии происходит такими же “порциями”, квантами.
В конце концов кванты электромагнитной энергии стали восприниматься как особые частицы, фотоны. И для этого были достаточно серьезные основания.
DV qDWDs R DR |
Пусть в некоторой полости находится равновесное тепловое излучение. Подсчитаем давление, которое оно оказывает на поглощающую поверхность (отражающую).
В объеме DV “запасена” энергия u×DV. Из этой энергии на площадку Ds попадет часть, пропорциональная телесному углу - под таким углом площадка Ds “видна” из элементарного объема DV:
.
С этой энергией, равной mc2, площадке будет передан импульс mc= и подействует сила . Вклад в давление даст лишь нормальная составляющая этой силы и поэтому выражение для давления будет иметь вид:
.
Мы выбрали элементарный объем в виде небольшого кубика. Но под таким же углом площадка Ds видна из любой точки колечка радиуса , показанного на рисунке. Поэтому в качестве элементарного объема может быть выбрано это колечко, поперечное сечение которого :
;
.
Прежде всего нас будет интересовать давление на зеркальную поверхность, которая вдвое больше выписанной величины. Таким образом, после интегрирования по q в пределах от нуля до p/2 мы получаем
.
Но это же выражение мы можем получить и с помощью других рассуждений. Используя понятие фотона, мы скажем, что в объеме DV содержится nwdw фотонов с частотой в пределах от w до w+dw и с импульсом . На площадку Ds попадет
фотонов и они передадут (зеркальной) поверхности импульс
.
Время “падения” этих фотонов на площадку будет . Чтобы найти подействовавшую на площадку силу, нам надо разделить на это время переданный импульс. Нормальная к площадке составляющая силы определит давление на площадку:
;
.
Нам осталось, как мы это делали раньше, вместо кубика выбрать элементарный объем в виде колечка, и мы получим:
.
После интегрирования по q и w мы получаем то же самое выражение для давления:
; .
Таким образом, и волновое рассмотрение равновесного теплового излучения и рассмотрение его как фотонного газа дает один и тот же результат.
Мы рассмотрели в качестве примера задачу о давлении равновесного теплового излучения на поверхность с двух разных позиций вот для чего. Сейчас, когда мы еще не слишком далеко зашли в анализе проблемы квантования, полезно вспомнить, что для определения “концентрации фотонов” мы воспользовались выражением для . Иначе говоря, мы произвели некоторую формальную замену переменных - объемную плотность стоячих волн мы заменили на концентрацию фотонов.
Но это не такая “безобидная” замена, как может показаться. Чтобы атом поглотил энергию ћw, он должен какое-то время находиться в переменном электромагнитном поле соответствующей частоты. То же самое можно сказать и об излучении - оно должно “занять” некоторое время. А говоря об излучении или поглощении фотона, мы теряем ощущение временной протяженности актов поглощения и излучения. Получается так, будто поглощение или излучение фотона происходит “мгновенно”, поскольку из рассмотрения исключается процесс излучения или поглощения. Между тем время излучения или поглощения иногда бывает очень существенно, как мы увидим в дальнейшем.
16. Примеры использования понятия фотона
16.1. Опыт Боте
Сч Сч Ф М М Л |
В этом опыте тонкая фольга облучалась слабым рентгеновским излучением, в результате чего она сама становилась излучателем рентгеновских лучей (наблюдалась рентгеновская флюоресценция). Два независимых счетчика фиксировали фотоны, в момент поглощения фотона на движущейся ленте ставилась метка. Эти метки, фиксирующие поглощения фотонов (квантов рентгеновского излучения) двумя счетчиками, не совпадали во времени. Отсюда и делался вывод о том, что (вторичное) излучение происходило не равномерно в разные стороны, а в определенном направления - к тому или иному счетчику.
Безусловно, это очень удобный способ объяснения работы механизма: фольгой поглощается квант энергии, фотон, возбуждается какой-то атом и этот атом испускает фотон в сторону одного из счетчиков (конечно, фотон может и миновать оба счетчика, остаться незафиксированным). Но такое рассуждение не может считаться доказательством того, что электромагнитная энергия “на самом деле” распространяется в виде направленного движения квантов энергии, фотонов.
Действительно, в основе доказательства лежит принятое априори предположение, что фольге возбуждается один атом, что именно излучение этого атома фиксируется счетчиком. Но картина происходящих процессов может быть совершенно иной, более сложной.
Под действием слабого излучения источника в фольге могут возбуждаться некоторые случайные группы атомов. В результате интерференции угловая диаграмма их излучения совершенно необязательно симметрична по отношению к счетчикам, что и приведет к неодновременному их срабатыванию.