Смекни!
smekni.com

Лекции по физике (стр. 12 из 24)

Количество стоячих волн с энергией

определяется распределением Больцмана:

.

С увеличением частоты количество волн с большой энергией уменьшается и тем самым снимается проблема бесконечной плотности энергии.

Подсчитаем среднюю энергию стоячей волны с частотой w:

.

Мы ввели обозначение

.

Выражение под знаком логарифма представляет собой сумму членов бесконечной геометрической прогрессии со знаменателем

. Поэтому средняя энергия стоячей волны

.

Умножив это значение на количество волн в интервале dw, получим энергию в этом интервале:

,

мы получим для плотности лучистой энергии выражение

,

которое носит название формулы Планка.


Лекция 16

12.5. Закон Стефана-Больцмана и закон смещения Вина

Мы с Вами получили связь между плотностью лучистой энергии и испускательной способностью абсолютно черного тела

и формулу Планка для плотности энергии

.

Это позволяет нам записать выражение для испускательной способности абсолютно черного тела:

.

Это выражение также называют формулой Планка. С ее помощью можно получить закон Стефана-Больцмана - связь энергетической светимости абсолютно черного тела с температурой:

.

Произведем замену переменной: введем

. Тогда выражение для энергетической светимости примет вид:

.

Интеграл в правой части выражения равен

. Таким образом,

;
.

Величина s называется постоянной Стефана-Больцмана и ее значение, подсчитанное с помощью формулы Планка, весьма точно совпадает с определенным экспериментально.

Закон смещения Вина связывает температуру и длину волны, на которую приходится максимум излучения абсолютно черного тела:

;
.

Чтобы получить выражение для b, нужно исследовать функцию

на экстремум. Принципиальных проблем в этой связи не возникает, но вычисления оказываются достаточно громоздкими. И тем не менее, учитывая огромную важность формулы Планка, нам следует заняться этими вычислениями.

Прежде всего перейдем в функции

от переменной
к переменной l. Проследите внимательно за выкладками:

.

Мы ввели обозначение

. Поскольку

,

мы получаем не такое уж сложное выражение:

.

Теперь займемся дифференцированием. Нам необходимо решить уравнение

;

.

Решить это уравнение “напрямую” нам не удастся. Поэтому перепишем его в виде

и решим методом последовательных приближений, в данном случае весьма эффективным.

В качестве нулевого приближения напрашивается значение

. Тогда

;

;

.

Ограничившись четырьмя знаками после запятой, получаем:

;

;
.

Полученное нами значение b очень хорошо совпадает с экспериментальным значением.

Сами законы Стефана-Больцмана и закон смещения Вина были установлены раньше, чем была получена формула Планка. То, что из нее были затем получены верные значения констант s и b, явилось блестящим подтверждением верности тех представлений, которые были заложены при ее получении. Но смысл этих представлений нам еще нужно осознать.

12.7. Оптическая пирометрия

Установление законов Стефана-Больцмана и закона смещения Вина позволили создать измерители температуры, работающие без контакта с горячим, лучшее сказать, с раскаленным телом.

Об GПрОк

Радиационные пирометры. Такие пирометры основаны на фокусировке излучения раскаленной поверхности на некотором теплоприемнике. Замечательно, что яркость резкого (сфокусированного) изображения не зависит от расстояния до объекта, если это последнее велико по сравнению с фокусным расстоянием объектива. Собственно, приходящую от удаленного объекта волну можно считать плоской, отчего попадающая на теплоприемник энергия слабо зависит от расстояния. Важно только, чтобы создаваемое объективом изображение полностью перекрывало теплоприемник.

Разумеется, предварительно производится градуировка пирометра по абсолютно черному телу. Но поскольку энергетическая светимость реальной раскаленной поверхности при той же температуре меньше светимости абсолютно черного тела (в соответствии с законом Кирхгофа), измеренная радиационная температура оказывается меньше действительной.

В справочниках имеются соответствующие поправочные коэффициенты, учитывающем отличие светимости поверхностей реальных материалов от светимости абсолютно черного тела. Любопытно, что значения этих коэффициентов в свою очередь зависят от температуры.

меньше равна большеяркость нити по отношению к фону

Яркостные пирометры. Как следует из названия, действие такого пирометра основано на сравнении яркости свечения тела, температура которого измеряется, и некоторого другого - нити лампы накаливания. Наиболее удобным здесь оказался красный цвет и именно через красный светофильтр производится в этом случае наблюдение (l=660 нм).

Применение пирометров обычно связано с металлургией. Производится наблюдение, например, окошка в стенки доменной или мартеновской печи. На фоне изображения светящегося окошка наблюдается нить лампочки накаливания. Регулируя ток через лампочку, добиваются уравнивания их яркостей в красном цвете. При этом нить лампочки становится невидимой - потому такой пирометр называют пирометром с “исчезающей” нитью.