С помощью спектрометров работающих в импульсном режиме можно детектировать сигналы ЯМР от любого сколь угодно малого количества вещества. Конечно, в этом случае требуется просто больше времени, чтобы получить достаточно надежные экспериментальные результаты.
Многие вещества, как известно, не растворяются или растворяются ограниченно. В этом случае сигнал ЯМР можно зарегистрировать от твердой фазы. Требуемая навеска исследуемого образца- до трех граммов. Уместно здесь отметить, что в процессе эксперимента образец не разрушается и может быть использован впоследствии для других целей.
Высокая специфичность и оперативность метода ЯМР, отсутствие химического воздействия на образец, возможность непрерывного измерения параметров открывают многообразные пути его применения в промышленности.
Внедрению метода ЯМР препятствовали :сложность аппаратуры и ее эксплуатации, высокая стоимость спектрометров, исследовательский характер самого метода.
2.Общая теория ядерного магнитного резонанса.
2.1.Классическое описание условий магнитного резонанса.
Вращающийся заряд q можно рассматривать как кольцевой ток, поэтому он ведет себя как магнитный диполь, величина момента равна:
m=iS, (2.1)
где i-сила эквивалентного тока;
S - площадь, охватываемая кольцевым током.
В соответствии с понятием силы тока имеем:
i=qn,
где n=v/2pr-число оборотов заряда q в секунду;
v-линейная скорость;
r-радиус окружности, по которой движется заряд.
Если перейти к электромагнитным единицам (т.е. разделить заряд на с) и учесть, что S=pr2, то выражение (2.1) можно переписать в следующем виде:
m=qvr/2c. (2.2)
Вращающаяся частица с массой М обладает угловым моментом (или моментом импульса)
где g=q/2Mc-гиромагнитное отношение, являющееся индивидуальной характеристикой частицы (ядра).
Рассматриваемая здесь модель, естественно, не может объяснить ни наличие магнитного момента у нейтральной частицы (например, у нейтрона), ни отрицательных магнитных моментов некоторых ядер. Тем не менее, изучение классического движения магнитного диполя в магнитном поле позволяет получить дополнительные (по сравнению с квантово-механическим рассмотрением) сведения о природе магнитного резонансного поглощения, особенно при рассмотрении нестационарных явлений. Недостатки классической модели указывают на сложность структуры ядра: полный угловой момент ядра получается в результате сложения в различных комбинациях орбитальных и спиновых движений частиц, входящих в состав ядра. Это сложение аналогично связи спиновых и орбитальных моментов электронов в атомах и молекулах.
Выражение 2.3 позволяет записать классическое уравнение движения магнитного момента
d
где
Если в отсутствии магнитного поля вращать вектор
d
Из сопоставления выражений 2.4 и 2.5 следует, что действие магнитного поля
Таким образом, в постоянном магнитном поле вектор магнитного момента будет прецессировать вокруг направления вектора
Если перейти к системе координат, вращающейся равномерно с угловой скоростью -g
Рис.1. Прецессия магнитного момента в магнитном поле
Допустим теперь, что кроме поля
Если, однако, само поле
Аналогичное явление резонанса должно наблюдаться, когда направление поля
Рис.2. Разложение вектора магнитного поля
На практике для создания магнитного поля, осциллирующего вдоль определенного направления, например, вдоль оси х, по катушке, ось которой перпендикулярна полю