Смекни!
smekni.com

Явление политипизма и методы получения различных политипов в SiC (стр. 1 из 3)

Санкт-Петербургский государственный политехнический университет

Кафедра физики полупроводников и наноэлектроники

Реферат

Дисциплина: Материалы и компоненты электронной техники

Тема: Явление политипизма и методы получения различных политипов в SiC

Выполнил студент гр. 3096/1 А.Н.Гордиенко

Руководитель, доцент Т.А.Гаврикова

"___"_______________ 2003 г.

Санкт-Петербург

2003

Основные моменты и явление политипизма

Перед тем как сформулировать что такое политипизм, необходимо кратко напомнить некоторые теоретические основы, предшествующие этому явлению. Как известно, в некоторых случаях атомы можно с некоторой степенью приближения представлять как несжимаемые сферы фиксированного радиуса. Разумеется, у каждого атома свой радиус. Этот радиус складывается из нескольких составляющих: количество протонов и нейтронов в ядре, количество электронных оболочек, занятых электронами, и возможно ещё какие-то другие составляющие. Рассматриваемые в таком представлении атомы будут укладываться в кристалле как можно плотнее, соприкасаясь поверхностями своих сфер. Таким образом образуются плотнейшие упаковки (ПУ). В зависимости от своей химико-физической природы, атомы могут образовывать различные структуры. При образовании кристалла атом может присоединить к себе несколько других, не обязательно себе подобных. Максимальное количество соседей вокруг одного атома называется координационным числом. По этому числу можно определить какая структура образованна в кристалле.

к.ч.

3

4

6

8

структура

равносторонний треугольник

тетраэдр

октаэдр

куб

Рассматривая ПУ послойно, обнаруживается, что соседние слои могут отличаться друг от друга, а также наблюдается периодичность групп слоёв. В зависимости от количества слоёв в одном периоде, ПУ делят на двух-, трёх-, четырёх- (и т.д.) слойные. Трёхслойные ПУ имеют кубическую структуру (например ГЦК решётка), а все остальные – гексагональную. Кубическая структура называется сфалеритом (S), а гексагональная – вюрцитом (W). Некоторые соединения могут образовывать различные структуры. Например, ZnS имеет две модификации – вюрцит и сфалерит. На основании вышеизложенного уже можно сформулировать определение того, что такое политипизм.

Политипизм – это способность образовывать различные ПУ.

Политипизм приводит к тому, что у кристаллов одного и того же химического состава наблюдаются вполне ощутимые различия различных физических параметров: количество основных и неосновных носителей заряда, ширина запрещённой зоны и т.д.

Политипизм в SiC

SiC является одним из представителей соединений, обладающих политипизмом. У этого соединения существует более 40 вариантов ПУ, известных на сегодняшний день. Для каждой ПУ существует своё обозначение: 2H, 3C, 4H, 6H, … Наиболее распространённым политипом является 6H. В зависимости от политипа ширина запрещённой изменяется 2.8¸3.5%.

Материал

Химический символ

Ширина запрещённой зоны, эВ

Подвижность электронов, см2/(В·с)

Кубический SiC

b-SiC

2.3

>1000

Гексагональный SiC

a-SiC

2.9

µ500

Основные свойства SiC

1 Широкая запрещенная зона

2 Высокие подвижности носителей тока

3 Химическая устойчивость
4 Высокая теплопроводность

Применение SiC

Указанные свойства обеспечивают возможность большого увеличения температуры p - n-перехода без ухудшения характеристик, благодаря чему карбид кремния может применяться:

1 В условиях высоких температур

2 При обычных температурах в приборах, отдающих большую мощность

3 В приборах с большой плотностью тока

Карбид кремния может использоваться в следующих приборах:

в люминесцентных диодах — в красной, зеленой и голубой областях спектра

в высокотемпературных диодах

в приборах, в которых используются основные носители тока

в туннельных диодах

в приборах с холодными катодами

в приборах, используемых в особых (трудных) условиях

Выращивание кристаллов SiC из пара методом Бриджмена-Стокбаргера

Карбид кремния выращивался в аппарате, показанном на рис. 1. Сублимационная камера представляет собой графитовую бутылку 1, плотно закрытую втулкой 2, которая оканчивается коническим тиглем 3; внутри этой бутылки помещается цилиндрический графитовый стакан 4, содержащий исходную загрузку карбида кремния 5. Стакан покоится на стопке радиационных экранов 6 толщиной 3 мм, отстоящих друг от друга на 6 мм. Общая высота бутылки 56 см, внутренний диаметр 10, 8 см, толщина стенок 6 мм; в нижней части имеется отверстие 7 для впуска аргона. Внутренний диаметр цилиндрической части тигля 3 равен 1, 8 см, толщина его стенок 2, 5 мм, угол между образующими конуса 82°. Все детали выточены из плотного графита наивысшей возможной (для блоков таких размеров) чистоты.

Сублимационная камера устанавливается в графитовой печи сопротивления на графитовом штоке длиной 60 см и диаметром 5 см. Шток в свою очередь с помощью конического шлифа (конусность 6°) укрепляется в медном водоохлаждаемом патроне высотой 28 см и диаметром 10 см. Патрон может передвигаться вверх и вниз с помощью винтового механизма.

Нагреватель печи состоит из двух коаксиальных тонкостенных графитовых цилиндров 13 и 14, в верхней части соединенных вместе. Участок нагревателя, отвечающий зоне высокой температуры (рабочая часть), имеет диаметр 14, 5 см и длину 40 см (внутренний цилиндр). Толщина стенок Рис. 1. Сублимационная нагревателя в этой области равна 1, 5 см. Наружный камера и нагреватель цилиндр нагревательного элемента окружен слоем теплоизоляции толщиной 15 см; в качестве теплоизолирующего материала используется сажа. Сажей заполнена и заглушка 15, которая служит для регулировки градиента температуры в тигле.

Справа от средней части рабочей зоны показан «горячий» конец смотрового канала 16 (диаметр 6 мм, длина 45 см) для контроля температуры нагревателя. Печь нагревается до 2400° С за 16 час, снижение тока до нуля после окончания опыта производится в течение 6 час.

Длина сублимационной бутылки, ее положение в печи и ток, проходящий через нагреватель печи, подбираются таким образом, чтобы плоскости, соответствующие изотермам 2390° С, располагались на уровнях 8 и 9. В зоне между изотермами 8 и 9 (незаштрихованная часть температурного графика в левой части фигуры) температура выше 2390° С. В зонах выше изотермы 8 и ниже уровня 9 (заштрихованы) температура ниже 2390° С. Давление (абсолютное) внутри сублимационной бутылки поддерживается равным 12 мм рт. ст. с помощью аргона.

По мере повышения температуры печи аргон внутри стакана-питателя постепенно замещается «бинарным паром», содержащим Si и С в различных соотношениях в зависимости от температуры [2, 4], пока вытеснение аргона не станет полным. Единственными фазами, существующими в зоне между изотермами 8 и 9, являются бинарный пар и графит. Выше изотермы 8 и ниже изотермы 9 устойчивой фазой является, кроме того, твердый карбид кремния.

Если сублимационную камеру передвинуть вверх на 1 мм, а положение изотерм 8 и 9 оставить неизменным, в стакане-питателе исчезнет слой карбида кремния толщиной 1 мм (появится графитовый остаток толщиной 1 мм), а в коническом тигле на линии роста 10 выше изотермы 8 осядет слой карбида кремния толщиной 1 мм.

Если перемещение производить с очень небольшой постоянной скоростью и если на уровне изотермы 8 имеется достаточно большой температурный градиент, можно надеяться, что осадок карбида кремния будет монокристаллическим.

Чтобы определить положение изотерм 8 и 9, одна сторона конического тигля 3 была сфрезерована, а внутрь стакана-питателя на том уровне, где в стенке имеется небольшой уступ, был помещен графитовый диск диаметром 9 см и толщиной 2 мм. Эго позволяет проводить одновременные измерения температуры (через окошечко в верхней части печи) на конце конического тигля и на диске внутри стакана-питателя. Отношение внутреннего диаметра стакана-питателя к внутреннему диаметру тигля 3 должно быть достаточно большим по следующим причинам: а) карбид кремния в тигле 3 представляет собой плотный кристаллический осадок, а в питателе — рыхлые куски; б) большая часть карбида кремния, испаряющегося в зоне изотермы 9 в питателе, будет осаждаться обратно ниже уровня 9, что будет приводить лишь к уплотнению загрузки 5, а не к росту осадка 10; в) часть паров теряется через зазор 11 между стаканом-питателем и сублимационной бутылкой, уходит в область радиационных экранов.

Радиационные экраны, помимо своего прямого назначения, имеют еще одну важную функцию. Они служат в качестве затворов, предотвращающих разбавление бинарного пара в верхней части сублимационной бутылки аргоном, который подводится с очень небольшой скоростью через отверстие 7 для поддержания в сублимационной камере постоянного давления, равного 12 мм рт. ст. Разбавление бинарного пара азотом понижало бы температуру осаждения карбида кремния.