После преодоления на поверхности металла потенциального порога

электрон унесет с собой кинетическую энергию, равную

или учитывая, что


.
наибольщей кинетической энергией при даном

,очевидно, будут обладать те электроны ,для которых потери по пути

равны нулюб т.е.

. (1)
Если пренебречь энергией теплового возбуждения электрона

, то

(2)
(уравнение Эйнштейна). при

по этой теории фотоэффект невозможен. Таким образом,значение

определяет наименьшую частоту фотоактивных фотонов (красную границу фотоэффекта для данного катода). Уравнение (2) теперь можно записать в виде

. (3)
Соотношение Эйнштейна (2) лежит в основе ряда фотоэлектрических методов измерения работы выхода фотокатодов. Например, величену c можно определить, измеряя в сферическом конденсаторе (при

) истиную разность потенциалов

катод-коллектор,при которой фототок прекращается . Действительно (с учетом контактной разности потенциалов )

следовательно,

т.е. при заданом

можем вычислить

и далее определить

из соотношения

или

т.е.

(4)
Закон Эйнштейна как показала эксперементальная проверка, строго выполняется для любых
фотокатодов, в том числе и для сложных ) Для металов закон Эйнштейна впервые подвердил на опыте Р.Милликен, но наибольшее точное исследование было выполнено П.И.Лукирским и С.С. Прилежаевым, которые применили метод тормозящего поля между сферическими электродами, ранее разработаный П.И.Лукирским. Пусть в системе двух концентрических сферических электродов эмиттером служит внутернняя сфера рассмотрим электрон,вылетевший из точки А под прямым углом к радиусу ОА, и предположим сначала, что напряжение между электродами отсуствует. Электрон движется с постоянной скоростью, и по мере приближения к наружному электроду радиальная составляющая скорости

растет , а составляющая, перпендикулярная к радиусу

, уменьшается, и в точке прибытия В

(5)
Если между электродами приложено напряжение, то электрическое поле радиально и оно изменяет только

а

остается такой же, как в отсуствие поля. Значит, в точке прибытия тангециального электрона энергия, связанная с составляющей

, равна

, (6)
где К—полная энергия электрона. Формула дает часть полной энергии, которая не измеряется
в методе тормозящего поля между сферическими электродами. Если

,то и, подавно,

, и измеряемая часть энергии равна

, (7)
т.е. при

можно с большой степенью точностью измерять распределения полных энергий электронов. Неизмеряемая часть энергии

будет наибольшей для электронов, начальная скорость которых направлена по касательной к поверхности эмиттера.Для всех других электронов ошибка будет еще меньше. Формула (7) остается верной и для системы, в которой внутренняя сфера заменена несферическим катодом достаточно малого размера. рис. показаны результаты измерения вольт-амперной характеристик для меди при трех длинах волн. Из спектрально разложенного потока излучения выделяются монохроматический пучок лучей, который направляется на внутерннюю сферу. Ток (очень слабый) измеряется электромером. Форму измеренных вольт-амперных характеристик истолковать нетрудно. Горизонтальный участок - это ток насыщения, текущий в ускоряющем поле. На рис.4 масштаб выбран так, что ордината, избражающая ток насыщения для всех длин волн, одинакова.В точке, где начинается понижение кривых, происходит переход от ускоряющего поля к тормозящему, и в этой точке напряжение батареи компенсирует контактную разность потенциаллов и истиное напряжение

.
Для точек пересечения характерсеик с осью абсцисс выполняется соотношение
зап 
Ф
эмгде Uзап - величина запирающего напряжения и Фэм- работа выхода эмиттера. Таким образом, на основании закона Эйнштейна задерживающий потенциал, при котором ток прекращается, лиенйно зависит от частоты

, причем по углу наклона прямой можно определитьh (если е считать известным ). На рис.3 паказаны прямые для Al

и Cu ,

Рис 3
причем для H получается 6,61·

эрг. сек, т.е. привосходное подтверждение закона Эйнштейна.

вольт-амперная характеристика для Cu
Рис 4.Этот опыт доказывает также, что энергия фотона

в металле иожет переходить к одному из свободных электронов. В этом состоит особеность фотоэлектрического поглощения света в металлах. Положение начало вольт-амперной характеристики , т.е. точка ее пересечения с осью абсцисс ---, не зависит от работы выхода металла-эмиттера . Если обозначить напряжение батареи, при котором

через U
зб , то
зап)
ист=u
зб+u
кн=

Ф
эм, uкн=

(Ф
а-Ф
эм),
то
uзб=

Ф
а),
т.е. при заданной частоте

и одном и том же металле коллектора-анода вольт-амперные характеристики для различных металлических эмиттеров начинаются из одной и той же точки на оси абсцисс.