Вихревой характер маг. поля. В отличие от эл. стат. поля, маг. поле является вихревым: линии магн. поля всегда замкнуты, представляют собой окружности (вихри), охватывающие проводники с током.
Магн. поле не явл. потенциальным. Линии поля B строят согласно правилу правого винта. Векторы B и H направлены по касательной в каждой точке линий.
Принцип суперпозиции
магнитных полей
Если в пр-ве имеется неск. проводников с токами, то в каждой точке пр-ва магн. поле создаётся каждым из проводников в отдельности независ. от наличия остальных. Результир. поле в этой точке характеризуется векторами B и H. Bi и Hi - векторы, порождаемые i-ым проводникомс током.
B=SBi; H=SHi;
Закон Био-Савара-Лапласа
Осн. задача магнитостатики состоит в умении рассчит. хар-ки полей. Закон Б-С-Л с использованием принципа суперпозиции даёт простейший метод расчёта полей.
dB-индукция, созд. в точ. A.
dB=(mm0 /4p)·(I·dl·sina/r2) [1]
dH=(I·dl·sina)/(4pr2) [2]
Индукция магн. поля, созданная элементом проводника dl с током I в точке A на расстоянии r от dl пропорц. силе тока, dl, синусу угла между r и dl и обр. пропорцион. квадрату расстояния r.
___ ____ __
dB=(mm0 /4p)·(I·[dl,r] /r3)
Значение з-на Б-С-Л заключается в том, что зная dH и dB от dl можно вычислить H и B проводника конеч. размеров разл. форм.
Применение з-на Б-С-Л
Поле прямого отрезка конечной длины с током.
m=1, m0=4p·10-7Гн/м, H?, B?
dH=I·dl·sina/4pr2
По правилу прав. винта найдём направл. dH
____ ____
H=SdH. Поскольку все dH напр. одинаково, можно записать H=òdH. Переменной интегрирования выби-раем угол a.
rda/dl=sina Þ dl=rdl/sina.
dH=I·r·da·sina/sina·4pr2=
=I·da /4pr
из треуг. DOAÞ b/r=sinaÞ
Þr=b/sina.
dH=I·sinada/4pb
a1
H=ò I·sinada/4pb=
a2
a1 a1
=I/4pbò sinada=-I/4pbcosa|
a2 a2
H=I/4pb(cosa1-cosa2) (2)
B=m0I/4pb(cosa1-cosa2) (2’)
Поле прямого бескон. тока.
Для беск. тока a1=0, a2=p
В (2): cosa1-cosa2=1-(-1)=2
H=I/2pb; B=m0I/2pb.
Поле кругового тока
H=òdH; r=R; a=90°
2pR
H=ò I·dl/4pR2=I·2pR/4pR2=
0
=I/2R; B=Im0/2R (4)
Картина линий поля для кругового тока:
Поле подобно эл. статич. полю диполя. В связи с этим круговой ток пердст. собой магн. диполь. Покажем, что круг. ток может служить магн. диполем. Для этого в ф-ле (4) домножим числитель и знаменатель на pR2.
B=m0·I·4pR2/2RpR2
pR2=S; I·S=Pm
B=m0·Pm /2pR3
Закон Ампера
На опыте устан., что на проводник с током в магн. поле действ. сила. Для прямолин. проводников длиной l: F=IBl·sina. При a=90° F=IBl. Для проводников сложной формы з-н Ампера запис. в дифференц. форме: dF=IBdl·sina;
___ ___ ___
dF=I[B,dl]-векторная форма.
____ ____
F=SdF
Взаимод. паралл. токов
Рассм. 2 проводника, расположенных паралл. друг к другу.
Будем считать, что 1 создаёт магн. поле, а 2 находится в поле 1-го. Тогда индукция маг. поля B1 в точках нахождения 2: B1=m0I1/2pd.
F2=I2B1l2sina=mI1I2l2/2pd.
Можно аналог. рассм. силу F1, действующ. на проводник 1 со стороны поля тока I2. F1=F2, если l1=l2=l. Парал. токи притягиваются, антипарал. - отталкиваются.
При рассм. парал. проводников вводят силу, действ. на единицу длины проводника:
fед.дл.=m0I1I2/2pd. (1)
Эта ф-ла позвол. ввести единицу силы тока в СИ “1 Ампер”.
Опред. ед. силы тока-Ампер
Полагая, что I1=I2=I из (1) имеем: I2=fед.дл.·2pd/m0= fед.дл.·d/2·10-7. Берём d=1м, fед.дл.=2·10-7Н/м.
За единицу силы тока 1A приним. силу такого тока, который протекает по 2-м парал. проводникам, расп. на расст. 1 м в вакууме, вызывает силу взаимодействия между ними, равную 2·10-7Н на кажд. ед. длины.
Сила Лоренца.
Эл. ток предст. собой упорядоченн. движение эл. зарядов. На токи в магн. поле действует сила Ампера, т.е. со стор. магн. поля на кажд. носитель заряда действ. тоже сила. Эту силу наз. силой Лоренца.
____ ____
Fл=qVBsina; a=B^V
___ _ ____
Fл=q[V,B] - в вект. форме.
На покоящеиеся заряды сила Лоренца не действ. На заряды, влетающие в поле паралл. линиям поля сила Лор. тоже не действ.
Если одноврем. действ. электр. и магн. поля, то справедлва ф-ла Лоренца:
-___ ___
F=qE+Fл