Скорость по оси ОХ:
Скорость по оси ОУ: Максимальное время подъема: ; tполн = 2t;Расстояние : S = Vx tполн. ; ; Максимальная высота:
; Движение тела, брошенного горизонтально: ; ;
2Электромагнитные колебания.
; ; - собственна частота колебаний в контуре; ; ; ; ; ; - фаза колебаний; - амплитуда тока; ;С – скорость в ваакуме; n – абс. показатель преломления среды;
Колебательный контур.
Колебательный контур- простейшая система, в которой могут возникать свободные электромагнитные колебания. Он представляет собой соединенные последовательно конденсатор и катушку. В закрытом колебательном контуре электромагнитных колебаний не возникает.
Свободные электромагнитные колебания в контуре.
Свободные электромагнитные колебания- периодически повторяющиеся изменения силы тока в электрической цепи, сопровождающиеся периодическими превращениями энергии электрического поля в энергию магнитного поля (или обратно), происходящие без потребления энергии от внешних источников. Простейшая система- колебательный контур (последовательно соединенные конденсатор и катушка).
Превращение энергии в колебательном контуре.
t=0: зарядка конденсатора от батареи, вся энергия в конденсаторе; E=qm2/2c.
t=T/8: возникновение тока I, энергия распределена по контуру.
t=T/4: конденсатор разрядился, вся энергия в катушке, I достигает мах.
t=3T/8: конденсатор начинает перезаряжаться, энергия распределена.
t=T/2: конденсатор полностью перезарядился, энергия распределена, I=0.
Уравнение, описывающее процессы в колебательном контуре, и его решение.
В колебательном контуре роль ЭДС играет ЭДС самоиндукции. I(R+r)+UC=EL=-LI¢=-LDI/Dt; R+r®0 Þ I(R+r)®0; -LI¢=UC=q/C; I¢=q/LC. Пусть 1/LC=w02, тогда q¢¢=-w02q- это основное уравнение собственных электромагнитных колебаний. Его решением является уравнение вида q=q0cos(w0t+j0).
Формула Томсона для периода колебаний.
T=2pÖLC¢- формула Томсона. В колебательном контуре роль ЭДС играет ЭДС самоиндукции. I(R+r)+UC=EL=-LI¢=-LDI/Dt; (R+r)®0 Þ I(R+r)®0; -LI¢=UC=q/C; I¢=q/LC. Пусть 1/LC=w02; T=2p/w0=2pÖLC¢.
Затухающие электромагнитные колебания.
Собственные колебания в контуре быстро затухают, то есть происходит уменьшение амплитуды
колебаний, так как значительная часть энергии при каждом колебании превращается в теплоту из-за наличия электрического сопротивления цепи и некоторая часть энергии излучается в окружающее пространство.Понятие о деформациях.
Деформации- это растяжение, сжатие, изгиб, кручение и т. д. При любом виде деформации, если она не велика, возникает сила упругости, восстанавливающая то состояние, в котором тело находилось до деформации.Закон Гука.
Сила упругости, возникающая при деформации тела, пропорциональна удлинению тела и направлению перемещения частиц тела относительно других частиц при деформации. Fупр.=-kx. k- коэффициент пропорциональности, называемый жесткостью тела. [Fупр.]=[Н/м].
Модуль Юнга.
Модуль Юнга- величина, характеризующая упругость материала. Dl/l=e- относительное удлинение, F/S=s- напряжение. s= Fe.
2 Незатухающие вынужденные колебания поддерживаются в цепи действием внешнего периодического U. Но возможны и другие способы получения незатухающих колебаний. Системы, в которых генерируются незатухающие колебания за счёт поступления энергии от источника внутри системы, называются автоколебательными . Незатухающие колебания, существующие в системе без воздействия на неё внешних периодических сил, назыв. автоколебаниями. Примером автоколебательной системы может служить генератор на транзисторе. Он содержит колебательный контур с конденсатором ёмкостью C, катушкой индуктивностью L, источник энергии и транзистор. Авто-я возбуждаются кол. кон. Генератора на транзисторе за счёт энергии источника постоянного U. В генераторе используются транзистор, устройство, сост. из эмиттера, базы и коллектора и имеющее 2 p-n перехода – прямой(эмиттерный) и обратный(коллекторный переход). Колебания тока в кол. кон. вызвают колебания U между эмиттером и базой, которые в свою очередь управляет I в цепи кол. кон.(обратная связь). Обратная связь - индуктивная (Lсв) от источника U в кол. кон. Поступает энергия, компенсирующая потери энергии в контуре на резисторе. Частота кол-й в кол. кон. Определяется L и C: w0=1/ÖLC. При малых L и C n кол-й велика. Генераторы на транзисторах широко применяются во множестве радиотехнических устройств: в радиоприёмниках, усилителях и т.д. Широко они применяются в современных электронно-вычислительных машинах. На примере генератора на транзисторе можно выделить основные эл-ты, хар-ые для многих автоколебательных систем: 1) источник энергии (источник пост. U), за счёт которого поддерживаются незатухающие кол-ния. 2)колеб. сис-ма, т.е. та часть автоколебательной системы, в которой происходят колебания. 3)устройство, регулирующее поступление энергии от источника в колеб. систему, - “клапан”(транзистор). 4)устройство, обеспечивающее обратную связь, с помощью которого кол. сис-ма управляет “клапаном” (индукт. связь катушки кол. кон.)с катушкой в цепи эмиттер- база.
Билет № 10
1. Fтр возникает при соприкосновении тел и всегда направлена вдоль поверхности соприкосновения. Этими она отличается от Fупр, направленной перпендикулярно пов-ти. Fтр препятствует перемещению соприкасающих тел. Fтр покоя равна по модулю и противоположна по направлению силе, направленной к покоящемуся телу. Сущ-т max Fтр покоя – (Fтр)max. только тогда, когда сила F станет больше, чем
(Fтр)max, тело получит ускорение. (Fтр) max=mN. m- коэф. трения. N-сила реакции опоры. Если тело скользит по какой-либо пов-ти, то его движению препятствует сила трения скольжения. По модулю она почти (Fтр) max. Направлена всегда в сторону, противоположную направлению движения тела относительно того тела, с кот. оно соприкасается. Направление Fтр противоположно направлению движения тела. Это значит, что а, сообщаемое телу Fтр, направленно против движения тела. Поэтому Fтр приводит к уменьшению u тела. Как и (Fтр) max. Fтр or=mN. m зависит от материалов, из которых изготовлены тела, как обработаны их пов-ти и т.д. m не зависит от S сопр-я пов-й тел, от положения тел. Трение между соприкасающими телами назыв. сухим трением. Когда тело движется, соприкасаясь с жидкостью или газом тоже возникает Fтр (сила жидкого трения). Сила жидкого трения << F сухого трения. В жидкости и газе нет Fтр покоя. Даже самая малая сила, приложенная к телу в жидкости или газе сообщает ему а. Сила жидкого трения зависит не только от направления движения тела но и от его u(Fтр жидкости зависит u). Форму тела, при котором Fтр жид мала называют обтекаемой формой. Fтр увеличивается при увеличении Fтяж. В быту часто полезное трение усиливают, а вредное ослабляют(применяют смазку, заменяют трение скольжения трением качения).