Смекни!
smekni.com

Теория твердоемкости тела. Ход Дебая (стр. 2 из 3)

(11)

Функция должна подчиняться требованию

(12)

Ввиду последнего условия правая часть равенства (11) при высокой температуре будет равна 3NR для любой функции ( ). При низких температурах играют роль только неболь­шие значения энергий , а для этих энергетических уровней кристалл можно рассматривать как идеальный фононный газ. Распределение однофононных состояний по импульсам идентично соответствующему распределению для материальных частиц, т. е. ( ) . Учитывая связь между импульсом и энергией, получим распределение по энергиям (13)

78

Интеграл дает только численный множитель, так что теплоемкость пропорциональна кубу температуры. Чтобы вывести формулу для интерполяции между надежными зна­чениями теплоемкости при высокой и низкой температуре, мы предположим, что выражение (13) справедливо ниже определенного предела энергии, тогда как за его пределами

. Этот предел выбирается таким образом, чтобы выполнялось условие (12). В терминах „дебаевской темпе­ратуры» , которая является эмпирической константой, ха­рактерной для данного твердого тела, предельную энергию можно выразить в виде . Кривая теплоемкости тогда

будет иметь вид

(14)

В этом выражении интеграл является функцией температуры и находится из таблиц или вычисляется численным интегри­рованием. Согласие этой формулы с измерениями лучше, чем можно было ожидать на основании предположений, сде­ланных при ее выводе.

Переходя теперь к переносу тепла в твердом теле, мы тотчас замечаем, что фононы, обладая свойствами волн, спо­собны передавать энергию на любое расстояние независимо от градиента температуры. Такой перенос тепла скорее на­поминает процесс излучения, чем процесс теплопроводности. Однако эксперимент с несомненностью показывает, что теплота передается через кристаллические; твердые тела только при наличии неоднородности температуры.

В качестве предпосылки к возникновению стационарных градиентов температуры необходимо, чтобы фононы могли обмениваться энергией. Такой обмен возможен, если принять во внимание ангармонические члены в выражении по­тенциальной энергии . Эти члены можно выразить в функции отдельных типов колебаний. Решая отно­сительно Гц и подставляя , мы получим эту часть потенциальной энергии в виде ряда, в котором каждый член зависит от произведения трех типов колебаний:

(15)

Тензоры третьего ранга Ь являются, по крайней мере в прин­ципе, известными величинами.

Каждый член в уравнении можно использовать для вычисления матричного элемента, определяющего в соответ­ствии с вероятность перехода между состояниями с двумя типами колебаний и состоянием с одним типом ко­лебания или обратно. Процессы такого рода известны под названием трехфононных столкновений. Матричные эле­менты в общем случае обращаются в нуль, когда осуще­ствляется суммирование по узлам решетки, так как экспо­ненциальные функции меняют знак и сокращаются. Неисче­зающие матричные элементы соответствуют только таким процессам, в которых

(16)

или

(17)

Эти условия совместно с условием R =R ‘ =R» приводят к тому, что экспоненциальные функции становятся равными единице. Сумма в (15) в соответствии с этим остается ко­нечной, если удовлетворяются условия (16) или (17). Закон сохранения энергии в переходе выражается в требо­вании, чтобы частоты ‘были связаны соотношением

(18)

или сходным уравнением.

Если волновые векторы удовлетворяют условию (16), то вероятность перехода будет конечной; однако такие про­цессы не должны приводить к наличию теплового сопроти­вления, так как волновой вектор при столкновении сохра­няется; таким образом, радиационный перенос энергии через решетку не предотвращается. Если волновые векторы удо­влетворяют условию (17), то волны рассеиваются; такого рода переходы называются процессами переброса ‘); они приводят к местному накоплению энергии и создают градиент температуры.

Таковы основы теории теплопроводности в кристалличе­ских твердых телах. Матричные элементы, вычисленные по (18), используются в трехфононных столкновениях. Если обозначить число фононов в равновесном состоянии через

(19)

то неравновесное распределение определяется в виде

(20)

где v—неизвестная функция от 1. В случае стационарного градиента температуры эта функция должна удовлетворять кинетическому уравнению

(21)

В этом уравнении коэффициенты А и В зависят от трех волновых векторов и соответствующих частот и полностью определяются с помощью теории возмущений. Величина К рассматривается как непрерывная переменная, поскольку гра­диент температуры определяется только в пределах таких областей, которые велики по сравнению С периодом кристал­лической решетки. Тройка волновых векторов соответствует процессам переброса.

Решения этом уравнения еще не получены. Пока еще невозможно вычислить количественно теплопроводность кри­сталлов, причем математические трудности в решении урав­нения (20) не являются единственным препятствием к этому. С помощью функции распределения коэффициенты пере­носа можно получить только посредством уравнения , к которому эта функция непосредственно не применима.

Однако теория дает возможность получить полуколиче­ственные результаты, которые находятся в соответствии с экспериментом. Найдено, что при высоких температурах коэффициент теплопроводности пропорционален 1/Т. Это очень хорошо согласуется с теоретическим результатом, вы­текающим из температурной зависимости коэффициентов уравнения (20). Когда температура снижается, вероятность процессов переброса заметно убывает и роль этих процессов в образовании теплового сопротивления кристаллов при низ­ких температурах стремится к нулю. Приобретают значение другие процессы, как, например, расспяние фононов на де­фектах решетки или границах зерен; и здесь снова экспериментальные результаты согласуются с выводами теории.

Теория явлений переноса в кристаллах и в классических жидкостях в настоящее время еще несовершенна по ряду причин. В классической жидкости оказывается трудным точно установить те микрофизические случайные процессы, от которых зависит необратимость; но функции молекуляр­ного распределения и их оценка находятся в наших руках. В кристаллах подробные сведения об элементарных случай­ных процессах недостаточны для вывода соответствующих функций распределения.

К сожалению, мы мало что можем сказать о квантовой теории жидкого состояния. Экспериментальные исследования жидкого гелия, дают обширные данные, интерпретация кото­рых в настоящее время проводится почти целиком на основе модельных представлений, не связанных с какой-либо фунда­ментальной теорией. Попытки вывести выражения для рас­пределения энергетических уровней и термодинамических параметров ведутся, но пока лишь с ограниченным успехом. Однако в этом отношении имеются обнадеживающие пер­спективы.

Обычно принимается, что нижние возбужденные состоя­ния жидкого гелия должны рассматриваться как фононный газ, не отличающийся от состояний кристаллических реше­ток. Эта точка зрения подтверждается измерениями тепло­емкости, которая оказалась пропорциональной Т при темпе­ратуре ниже 0,6° К. Однако в жидкостях фононы не могут рассматриваться с помощью линейных преобразований коор­динат атомов. Отдельные колебания можно определить только как пространственные компоненты Фурье в разложении плотности. Несмотря на эту трудность, многие авторы до­стигли некоторых успехов в определении вклада фононных переменных в функцию Гамильтона и в уравнения движе­ния.

Теории придется преодолеть еще серьезные математиче­ские трудности, но можно ожидать, что она постигнет боль­ших успехов в изучении квантовых жидкостей.

Наше рассуждение в сущности сводится к тому, что элек­троны, расположенные в глубине распределения Ферми, почти «не чувствуют» влияния температуры. Их состояние определяется принципом Паули, который требует, чтобы электроны запол­няли все уровни, но не позволяет им вторгаться друг к другу па уровень. Не удивительно поэтому, что электроны, расположен­ные в глубоких внутренних оболочках ионных остовой, не следует принимать во внимание при вычислении теплоемкости твердого тела, по крайней мере до тех но)), пока температура не станет столь велика, что они смогут -возбуждаться термическим путем.

Ход Дебая.

В 1912 г. эту задачу приближенно решил Дебай, рассматри­вая твердое тело, как изотропную непрерывную среду. -

Число продольных колебаний в интервале частот ( ) в объеме V не прерывной среды равно

где а—скорость распространения продольных волн в среде.

В твердом теле помимо продольных колебаний возможны два независимых поперечных колебания. Их число в том же интервале частот

где С1 — скорость распространения поперечных колебаний.

Полное число колебаний в интервале

где с — средняя скорость упругих волн в среде, определяемая из равенства

В .непрерывной среде число собственных колебаний бесконечно. Атомная структура -твердого тела учитывается теории Дебая условием, что число нормальных колебаний равно числу степеней свободы твердого тела, т. е.

Откуда максимальная частота

а соответствующая ей минимально возможная длина волны , где а — межатомное расстояние в кристалле.

Таким образом, функция распределения частот в теории Дебая имеет вид

На рис. пунктирная линия изображает функцию распределе­ния частот в теории Дебая, а сплошная линия — решеточную функцию распределения, учитывающую дискретную структуру \кристалла и специфичную для конкретного твердого тела. Функция определяется экспериментально по рассеянию нейтронов, а теоретически — численными методами.

В качестве термодинамического потенциала кристалла по формулам можно вычислить энергию Гельмгольца, а потом определить и все другие термодинамические функции твердого тела в теории Дебая.