Смекни!
smekni.com

Стереометрия. Тема Движение (стр. 2 из 6)

2. Îïðåäåëåíèå äâèæåíèÿ.

Äâèæåíèåì (èëè ïåðåìåùåíèåì) ôèãóðû íàçûâàåòñÿ òàêîå åå îòîáðàæåíèå, ïðè êîòîðîì êàæäûì äâóì åå òî÷êàì A è B ñîîòâåòñòâóþò òàêèå òî÷êè A’ è B’, ÷òî |A’B’| = |AB|. (ðèñ.2).

Òîæäåñòâåííîå îòîáðàæåíèå ÿâëÿåòñÿ îäíèì èç ÷àñòíûõ ñëó÷àåâ äâèæåíèÿ.

Ôèãóðà F’ íàçûâàåòñÿ ðàâíîé ôèãóðå F, åñëè îíà ìîæåò áûòü ïîëó÷åíà èç F äâèæåíèåì.

3. Îáùèå ñâîéñòâà äâèæåíèÿ.

Ñâîéñòâî 1 (ñîõðàíåíèå ïðÿìîëèíåéíîñòè).

Ïðè äâèæåíèè òðè òî÷êè, ëåæàùèå íà ïðÿìîé, ïåðåõîäÿò â òðè òî÷êè, ëåæàùèå íà ïðÿìîé, ïðè÷åì òî÷êà, ëåæàùàÿ ìåæäó äâóìÿ äðóãèìè, ïåðåõîäèò â òî÷êó, ëåæàùóþ ìåæäó îáðàçàìè äâóõ äðóãèõ òî÷åê (ñîõðàíÿåòñÿ ïîðÿäîê èõ âçàèìíîãî ðàñïîëîæåíèÿ).

Äîêàçàòåëüñòâî. Èç ïëàíèìåòðèè èçâåñòíî, ÷òî òðè òî÷êè A, B, C ëåæàò íà ïðÿìîé òîãäà è òîëüêî òîãäà, êîãäà îäíà èç íèõ, íàïðèìåð òî÷êà B, ëåæèò ìåæäó äâóìÿ äðóãèìè - òî÷êàìè A è C, ò.å. êîãäà âûïîëíÿåòñÿ ðàâåíñòâî

|AB| + |BC| = |AC|.

Ïðè äâèæåíèè ðàññòîÿíèÿ ñîõðàíÿþòñÿ, à çíà÷èò, ñîîòâåòñòâóþùåå ðàâåíñòâî âûïîëíÿåòñÿ è äëÿ òî÷åê A’, B’, C’:

|A’B’| + |B’C’| = |A’C’|.

Òàêèì îáðàçîì, òî÷êè A’, B’, C’ ëåæàò íà îäíîé ïðÿìîé è èìåííî òî÷êà B’ ëåæèò ìåæäó A’ è C’.

Èç äàííîãî ñâîéñòâà ñëåäóþò òàêæå åùå íåñêîëüêî ñâîéñòâ:

Ñâîéñòâî 2. Îáðàçîì îòðåçêà ïðè äâèæåíèè ÿâëÿåòñÿ îòðåçîê.

Ñâîéñòâî 3. Îáðàçîì ïðÿìîé ïðè äâèæåíèè ÿâëÿåòñÿ ïðÿìàÿ, à îáðàçîì ëó÷à - ëó÷.

Ñâîéñòâî 4. Ïðè äâèæåíèè îáðàçîì òðåóãîëüíèêà ÿâëÿåòñÿ ðàâíûé åìó òðåóãîëüíèê, îáðàçîì ïëîñêîñòè - ïëîñêîñòü, ïðè÷åì ïàðàëëåëüíûå ïëîñêîñòè îòîáðàæàþòñÿ íà ïàðàëëåëüíûå ïëîñêîñòè, îáðàçîì ïîëóïëîñêîñòè - ïîëóïëîñêîñòü.

Ñâîéñòâî 5. Ïðè äâèæåíèè îáðàçîì òåòðàýäðà ÿâëÿåòñÿ òåòðàýäð, îáðàçîì ïðîñòðàíñòâà - âñå ïðîñòðàíñòâî, îáðàçîì ïîëóïðîñòðàíñòâà - ïîëóïðîñòðàíñòâî.

Ñâîéñòâî 6. Ïðè äâèæåíèè óãëû ñîõðàíÿþòñÿ, ò.å. âñÿêèé óãîë îòîáðàæàåòñÿ íà óãîë òîãî æå âèäà è òîé æå âåëè÷èíû. Àíàëîãè÷íîå âåðíî è äëÿ äâóãðàííûõ óãëîâ.

Ñíà÷àëà ÿ ðàññìîòðþ âñå îñíîâíûå âèäû äâèæåíèé, à çàòåì ñâåäó èõ â åäèíóþ ñèñòåìó.

4. Ïàðàëëåëüíûé ïåðåíîñ.

Îïðåäåëåíèå. Ïàðàëëåëüíûì ïåðåíîñîì, èëè, êîðî÷å, ïåðåíîñîì ôèãóðû, íàçûâàåòñÿ òàêîå åå îòîáðàæåíèå, ïðè êîòîðîì âñå åå òî÷êè ñìåùàþòñÿ â îäíîì è òîì æå íàïðàâëåíèè íà ðàâíûå ðàññòîÿíèÿ (ðèñ.3), ò.å. ïðè ïåðåíîñå êàæäûì äâóì òî÷êàì X è Y ôèãóðû ñîïîñòàâëÿþòñÿ òàêèå òî÷êè X’ è Y’, ÷òî

XX’ = YY’.

Îñíîâíîå ñâîéñòâî ïåðåíîñà: Ïàðàëëåëüíûé ïåðåíîñ ñîõðàíÿåò ðàññòîÿíèÿ è íàïðàâëåíèÿ, ò.å.

X’Y’ = XY.

Îòñþäà âûõîäèò, ÷òî ïàðàëëåëüíûé ïåðåíîñ åñòü äâèæåíèå, ñîõðàíÿþùåå íàïðàâëåíèå è íàîáîðîò, äâèæåíèå, ñîõðàíÿþùåå íàïðàâëåíèå, åñòü ïàðàëëåëüíûé ïåðåíîñ.

Èç ýòèõ óòâåðæäåíèé òàêæå âûòåêàåò, ÷òî êîìïîçèöèÿ ïàðàëëåëüíûõ ïåðåíîñîâ åñòü ïàðàëëåëüíûé ïåðåíîñ.

Ïàðàëëåëüíûé ïåðåíîñ ôèãóðû çàäàåòñÿ óêàçàíèåì îäíîé ïàðû ñîîòâåòñòâóþùèõ òî÷åê. Íàïðèìåð, åñëè óêàçàíî, â êàêóþ òî÷êó A’ ïåðåõîäèò

äàííàÿ òî÷êà A, òî ýòîò ïåðåíîñ çàäàí âåêòîðîì AA’, è ýòî îçíà÷àåò, ÷òî âñå òî÷êè

ñìåùàþòñÿ íà îäèí è òîò æå âåêòîð, ò.å. XX’ = AA’ äëÿ âñåõ òî÷åê Õ.

5. Öåíòðàëüíàÿ ñèììåòðèÿ.

Îïðåäåëåíèå 1. Òî÷êè A è A’ íàçûâàþòñÿ ñèììåòðè÷íûìè îòíîñèòåëüíî òî÷êè Î, åñëè òî÷êè A, A’, O ëåæàò íà îäíîé ïðÿìîé è OX = OX’. Òî÷êà Î ñ÷èòàåòñÿ ñèììåòðè÷íîé ñàìà ñåáå (îòíîñèòåëüíî Î).