Смекни!
smekni.com

СТОХАСТИЧНОСТЬ И НЕЛИНЕЙНОСТЬ СИСТЕМ. НЕРАВНОВЕСНОСТЬ СИСТЕМ. ЭНТРОПИЯ И НЕГЭНТРОПИЯ (стр. 3 из 4)

5. Ответственным этапом является определение цели, а для неживой природы целесообразности или назначения системы. По степени выполнения целевых критериев и определяется неопределённость или вероятность выполнения, т.е. обобщенная энтропия системы (ОЭ). Часто целью является обеспечение устойчивости структуры, развития или эффективного использования ресурсов системой. Для установления конкретных целей необходимо знать структуру и функции более общей по иерархии системы. Цель в развернутом виде определяет программу действия системы в будущем. Как и программ, целей может быть также несколько вариантов. Из них необходимо выбирать самую существенную или несколько существенных. В последнем случае придётся при оптимизации идти на компромиссы. Например, рассчитывают функции желательности ожидаемых результатов. Для каждого критерия устанавливают свою весомость и рассчитывают совместный критерий выполнения цели. Критерии цели должны быть так конкретными, чтобы на их основе можно указать, как измерить, достигнута ли цель или нет, или в какой мере она достигнута (100 %, 80% и т.д.). Часто надо вопрос целеполагания рассмотреть более широко и обратить внимание на осмысливание всей проблемы. Необходимо выяснить цели стратегического и тактического назначения, вероятность достижения цели, затраты и эффективность при альтернативных решениях. Приближённый ответ на точно заданный вопрос даёт часто больше пользы, чем точный ответ на неправильно заданный вопрос. Обычно задаётся вместе с целью и срок, когда она должна быть выполнена или соблюдена. Например, сохранение работоспособности после эксплуатации через 10 лет или получение прибыли в 2000 году. Степень достижения цели оценивают вероятностью её выполнения. Для определения энтропии системы относительно конкретно поставленной цели необходимо измерить вероятность достижения этой цели. Если имеется достаточно статистических данных по поведению этой системы, то расчёты не представляют трудностей:

n Н(a) = S р(Ai) ln р(Ai) i В непрерывном варианте, если случайная величина x и плотность её распределения ¦(x): + ? H(x) = ¦(x) ln ¦(x) dx ? При допущении равновероятностных исходов: Н(a) = ln р(Ai), или Н(a) = log2 р(Ai) в битах/

Однако, для сложных систем, структура, функции и существенные факторы которых изменяются быстро, как правило, статистических данных недостаточно. Проведение статистических экспериментов в уникальных системах вообще невозможно. Для таких случаев придётся провести расчёты по приближенным условным энтропиям и вероятностям, найденным по теоретическим или косвенным методам. 7. Определение условных вероятностей и энтропий системы относительно выполнения целевых критериев по влияющим на систему факторам. В качестве влияющих факторов необходимо учесть все вещественные, энергетические и информационные воздействия, от которых зависит цель системы. В первом этапе моделирования допускается независимость действия отдельных факторов. В случае сильного взаимного влияния друг на друга, вводят ещё дополнительный фактор по влиянию интеракции двух факторов. Теоретически надо было бы определить зависимость статистической кривой распределения условной вероятности целевого критерия от статистической кривой распре деления каждого фактора. Однако практически достигается достаточная достоверность и при оценке зависимостей средних вероятностей Р (А / В). Часто при решении управленческих задач или при разработке прогнозов не хватает опытных и статистических данных. Кроме того, редко известны характер кривых распределения, особенно для внешних факторов, которые могут быть элементами других систем. Все это затрудняет точное определение Р (А / В). Тем не менее, часто имеются отрывочные опытные данные или данные наблюдения, теоретические гипотезы или априорные литературные сведения, что позволяет предположить вероятность достижения цели. Часто можно сделать полезные выводы по априорным данным, если под влиянием конкретного фактора цель вообще не может достигнута или вероятность её недопустимо мала. Иногда полезно также провести дополнительные опыты или наблюдения по методу Байеса или другими методами увеличивать точность оценки вероятностей.

8. Расчёт обобщённой энтропии (ОЭ) системы на основе данных условных энтропий, влияющих на систему факторов. Расчёты производят по формулам, для равновероятных исходов:

n ОЭ(В/х) = е ki log2 P(B/xi) i = 1 В обще случае неравного распределения вероятности n

ОЭ(В/хi) = е ki . P(B/xi) . log2P(B/xi) i = 1 здесь: P вероятность достижения цели, B критерий достижения цели, xi средние значения отдельных факторов (индексы 1 n), k коэффициент рассеяния информации, 1 n перечень отдельных факторов, влияющих на систему. Коэффициент рассеяния информации k всегда больше 1. Он применяется, если имеются дополнительные технологические, организационные или конфликтные условия, которые обуславливают дальнейшее повышение энтропии (в промежуточных этапах). При допущении их отсутствия принимается k = 1. В формуле предполагается аддитивность всех условных энтропий по факторам, которая соблюдалась бы в случае независимости влияния всех факторов на систему. В большинстве случаев влияние одного фактора зависит от влияния других факторов и это (в необходимых случаях) следует учесть путём введения дополнительного фактора (условной энтропии). Во многих случаях условие аддитивности даёт достаточную точность. Во всяком случае она для энтропии (lg2P) соблюдается значительно полнее, чем для условных вероятностей.

9. Системный анализ модели (формулы) обобщённой энтропии. Удельный вес влияния отдельных факторов условных энтропий в общей энтропии разный. Необходимо выяснить несущественные факторы (у которых ОЭ (В/xi) не большая) и опасные факторы (большой удельный вес ОЭ (В/xi)). Несущественные факторы можно исключить из формулы. Влияние опасных факторов подвергается более подробному анализу и уточнению. Уточняются возможные пределы изменения фактора, дисперсия и её влияние на ОЭ (В/xi). Необходимо также выяснить, на каком этапе возникает неопределённость, можно ли дополнительными действиями или опытами её уменьшать. Особенно обращают внимание на возможность существования и обнаружения непредвиденных обстоятельств и факторов, которые могут увеличивать ОЭ (В/xi).

10. Выяснение возможностей уменьшения ОЭ путём улучшения структуры модели. Анализируется постановка проблемы и целей для системы в целостности, взаимовлияние различных факторов. Иногда возникает необходимость расширения пределов системы. Выясняются причины неопределённостей. Являются ли они неизбежными, зависящими от стохастического характера явлений или зависят от недостаточности наших знаний. Устранение неопределённостей связано с расходами. Надо найти компромиссное решение: что менее желательно неопределённость или денежные затраты. Предварительная модель не является окончательным решением. Необходимо найти по возможности больше альтернативных вариантов решений и улучшить старые. Для оценки модели следует проверить повторно её достоверность, обоснованность и гомоморфность.

11. Расчёт обобщённой негэнтропии (ОНГ) модели системы. Негэнтропию реально существующей системы невозможно точно рассчитать. Для этого на до было бы определить участок от бесконечно большой энтропии до фактической энтропии. Практически имеется возможность определить ОНГ упрощённых моделей, для которых имеется максимально возможная ОЭ (ОЭм, без учёта ОНГ). Для определения ОНГ в модели реальных систем рассчитывают разность между максимальной ОЭм модели и фактической ОЭф после получения инфор мации (ОНГ1).

ОНГ2 ?+??????????? ? ? ОНГ1 ? ?+????? ? ? OЭф ОЭм ОЭми Энтропия R ? ????????????? ??????? ?????????R ? ? ? где: ОЭф фактическая ОЭ модели системы, ОЭм максимально возможная ОЭ модели системы, ОЭми максимально возможная ОЭ модели системы после получения информации.

Определение ОЭм модели зависит от сложности проблемы (реальной системы), требуемой точности (адекватности, гомоморфности) модели и имеющихся ресурсов времени и мощности вычислительной аппаратуры. Выбор степени сложности модели зависит от количества независимых факторов (координат) и от масштаба каждого координата, т.е. от объёма пространства состояния модели. Для решения практических задач часто достаточное разнообразие имеет модель с максимально 1000 факторами, каждый из них имеет до 1000 значимых единиц. Ориентировочная ОЭм модели около 104 бит. Для научных целей соответствующие параметры модели: 10000 факторов, 10000 единиц и ОЭм около 105 бит. Для сверхточных исследований сложных систем: 100000 факторов, 100000 единиц и ОЭм около 106 бит. При использовании ОЭм существенно, чтобы была принято её постоянное значение для определения ОНГ всех систем одной серии, обладающих одинаковыми целевыми критериями. Общей формулой расчёта обобщенной негэнтропии ОНГ модели является (если максимальная энтропия не увеличивается):

ОНГ1 = ОЭм Оэф

Если в результате получения системой информации максимальная энтропия увеличивается, то ОНГ2 = ОЭми ОЭф По определению обобщённой негэнтропии (ОНГ) можно сделать следующие заключения:

1. Нельзя определить абсолютную негэнтропию реальной системы. Можно определить только изменение негэнтропии в модели относительно конкретного события в результате полученной информации.

2. В результате полученной информации ОНГ системы увеличивается. Однако, это увеличение может произойти за счёт уменьшения уже существующей ОЭ или за счёт увеличения сложности (разнообразия, максимальной энтропии) модели. Поэтому как максимальную так и фактическую энтропию, надо обязательно определить после получения информации.