Смекни!
smekni.com

Расчёт и проектирование установки для получения жидкого кислорода (стр. 5 из 5)

Для определения веса блока очистки определяем массу одного баллона, который имеет следующие геометрические размеры:

наружний диаметр ……………………………………………….Dн = 510 мм,

внутренний диаметр ……………………………………………..Dвн = 460 мм,

высота общая ……………………………………………………..Н = 1500 мм,

высота цилиндрической части …………………………………..Нц = 1245 мм.

Тогда вес цилиндрической части баллона

GM = (Dн2 – Dвн2цм*π/4 = (0,512 – 0,462)*1,245*7,85*103*3,14/4 = 372,1 кг,

где γм – удельный вес металла, γм = 7,85*103 кг/м3.

Вес полусферического днища

GM’’ = [(Dн3/2) – (Dвн3/2)]* γм*4π/6 = [(0,513/2) – (0,463/2)]*7,85*103*4*3,14/6 = 7,2 кг

Вес баллона:

GM + GM’’ = 382 + 7,2 = 389,2 кг

Вес крышки с коммуникациями принимаем 20% от веса баллона:

GM’’’ = 389,2*0,2 = 77,84 кг

Вес четырёх баллонов с коммуникацией:

GM = 4(GM + GM’’ + GM’’’ ) = 4*(382 + 7,2 + 77,84) = 1868 кг.

Тогда:

Q1 = 1868*0,503*(648 – 275) = 3,51*105 кДж

Количество тепла, затрачиваемое на нагревание адсорбента:

Q2 = GцСцср’ – Tнач’ ) = 604,6*0,21*(648 – 275) = 47358 кДж

Количество тепла, затрачиваемое на десорбцию влаги:

Q3 = GH2OCpкип – Тнач’ ) + GH2O*ε = 120,84*1*(373 – 275) + 120,84*2258,2 = 2,8*105 кДж

ε – теплота десорбции, равная теплоте парообразования воды; Ср – теплоёмкость воды.

Количество тепла, затрачиваемое на нагрез изоляции:

Q4 = 0,2Vиз γизСизиз – Тнач) = 0,2*8,919*100*1,886*(523 – 275) = 8,3*104 кДж

Vиз = Vб – 4Vбалл = 1,92*2,1*2,22 – 4*0,20785*0,512*0,15 = 8,919 м3 – объём изоляции.

γиз – объёмный вес шлаковой ваты, γиз = 100 кг/м3

Сиз – средняя теплоёмкость шлаковой ваты, Сиз = 1,886 кДж/кгК

Потери тепла в окружающую среду составляют 20% от ΣQ = Q1 + Q2 + Q4 :

Q5 = 0,2*(3,51*105 + 47358 + 8,3*104 ) = 9.63*104 кДж

Определяем количество регенерирующего газа:

Vрег = (Q1 + Q2 + Q3 + Q4 + Q5)/ ρN2*CpN2*(Твх + Твых. ср)* τрег =

=(3,51*105 + 47358 + 2,8*105 + 8,3*104 + 9,63*104)/(1,251*1,048*(673 – 463)*3) = 1038 нм3

Проверяем скорость регенерирующего газа, отнесённую к 293 К:

ωрег = 4 Vрег*293/600*π*Da2 *n*Tнач = 4*1038*293/600*3,14*0,462*2*275 = 5,546 м/с

n – количество одновременно регенерируемых адсорберов, n = 2

Определяем гидравлическое сопротивление слоя адсорбента при регенерации.

ΔР = 2fρLω2/9,8dэх2

где ΔР – потери давления, Па;

f – коэффициент сопротивления;

ρ – плотность газа, кг/м3;

L – длина слоя сорбента, м;

dэ – эквивалентный диаметр каналов между зёрнами, м;

ω – скорость газа по всему сечению адсорбера в рабочих условиях, м/с;

א – пористость слоя адсорбента, א = 0,35 м23.

Скорость регенерирующего газа при рабочих условиях:

ω = 4*Vрегвых.ср./3600*π*Da2*n*Тнач = 4*1038*463/3600*3,14*0,462*2*275 = 1,5 м/с

Эквивалентный диаметр каналов между зёрнами:

dэ = 4*א*dз/6*(1 – א) = 4*0,35*4/6*(1 – 0,35) = 1,44 мм.

Для определения коэффициента сопротивления находим численное значение критерия Рейнольдса:

Re = ω*dэ*γ/א*μ*g = 1,5*0,00144*0,79*107/0,35*25*9,81 = 198,8

где μ – динамическая вязкость, μ = 25*10-7 Па*с;

γ – удельный вес азота при условиях регенерации,

γ = γ0 *Р*Т00вых.ср = 1,251*1,1*273/1,033*463 = 0,79 кг/м3

По графику в работе [6] по значению критерия Рейнольдса определяем коэффициент сопротивления f = 2,2

Тогда:

ΔР = 2*2,2*0,79*1,3*1,52/9,81*0,00144*0,352 = 587,5 Па

Определяем мощность электроподогревателя:

N = 1,3* Vрег*ρ*Ср*(Твх – Тнач)/860 = 1,3*1038*1,251*0,25(673 – 293)/860 = 70,3 кВт

где Ср = 0,25 ккал/кг*К

7. Определение общих энергетических затрат установки

l = [Vρв RToc ln(Pk/Pn)]/ηиз Кж*3600 = 1711*0,287*296,6*ln(4,5/0,1)/0,6*320*3600 = 0,802 кВт

где V – полное количество перерабатываемого воздуха, V = 2207,5 кг/ч = 1711 м3

ρв – плотность воздуха при нормальных условиях, ρв = 1,29 кг/м3

R – газовая постоянная для воздуха, R = 0,287 кДж/кгК

ηиз – изотермический КПД, ηиз = 0,6

Кж – количество получаемого кислорода, К = 320 м3

Тос – температура окружающей среды, принимается равной средне – годовой температуре в городе Владивостоке, Тос = 23,60С = 296,6 К

8. Расчёт процесса ректификации.

Расчёт процесса ректификации производим на ЭВМ (см. распечатки 4 и 5).

Вначале проводим расчёт нижней колонны. Исходные данные вводим в виде массива. Седьмая

строка массива несёт в себе информацию о входящем в колонну потоке воздуха: принимаем, что в нижнюю часть нижней колонны мы вводим жидкий воздух.

1 – фазовое состояние потока, жидкость;

0,81 – эффективность цикла. Поскольку в установке для ожижения используется цикл Гейландта (х = 0,19), то эффективность установки равна 1 – х = 0,81.

0,7812 – содержание азота в воздухе;

0,0093 – содержание аргона в воздухе;

0,2095 – содержание кислорода в воздухе.

Нагрузку конденсатора подбираем таким образом, чтобы нагрузка испарителя стремилась к нулю.

8. Расчёт конденсатора – испарителя.

Расчёт конденсатора – испарителя также проводим на ЭВМ с помощью программы, разработанной Е. И. Борзенко.

В результате расчёта получены следующие данные (смотри распечатку 6):

Коэффициент телоотдачи в испарителе……….……….ALFA1 = 1130,7 кДж/кгК

Коэффициент телоотдачи в конденсаторе…………… ALFA2 = 2135,2 кДж/кгК

Площадь теплопередающей поверхности………………..………F1 = 63,5 м3

Давление в верхней колонне ………………………………………Р1 = 0,17 МПа.

10. Подбор оборудования.

1. Выбор компрессора.

Выбираем 2 компрессора 605ВП16/70.

Производительность одного компрессора ………………………………..16±5% м3/мин

Давление всасывания……………………………………………………….0,1 МПа

Давление нагнетания………………………………………………………..7 МПа

Потребляемая мощность…………………………………………………….192 кВт

Установленная мощность электродвигателя………………………………200 кВт

2. Выбор детандера.

Выбираем ДТ – 0,3/4 .

Характеристики детандера:

Производительность…………………………………………………… V = 340 м3

Давление на входе ………………………………………………………Рвх = 4 МПа

Давление на выходе …………………………………………………….Рвых = 0.6 МПа

Температура на входе …………………………………………………..Твх = 188 К

Адиабатный КПД ……………………………………………………….ηад = 0,7

3. Выбор блока очистки.

Выбираем стандартный цеолитовый блок осушки и очистки воздуха ЦБ – 2400/64.

Характеристика аппарата:

Объёмный расход воздуха ……………………………….V=2400 м3

Рабочее давление:

максимальное ……………………………………………Рмакс = 6,4 МПа

минимальное………………………………………..……Рмин = 3,5 МПа

Размеры сосудов…………………………………………750х4200 мм.

Количество сосудов……………………………………..2 шт.

Масса цеолита …………………………………………..М = 2060 кг

Список используемой литературы:

1. Акулов Л.А., Холодковский С.В. Методические указания к курсовому проектированию криогенных установок по курсам «Криогенные установки и системы» и «Установки сжижения и разделения газовых смесей» для студентов специальности 1603. – СПб.; СПбТИХП, 1994. – 32 с.

2. Акулов Л.А., Борзенко Е.И., Новотельнов В.Н., Зайцев А.В.Теплофизические свойства криопродуктов. Учебное пособие для ВУЗов. – СПб.: Политехника, 2001. – 243 с.

3. Архаров А.М. и др. Криогенные системы: Основы теории и расчёта: Учебное пособие для ВУЗов, том 1., - М.: Машиностроение, 1998. – 464 с.

4. Архаров А.М. и др. Криогенные системы: Основы теории и расчёта: Учебное пособие для ВУЗов, том 2., - М.: Машиностроение, 1999. – 720 с.

5. Акулов Л.А., Холодковский С.В. Криогенные установки (атлас технологических схем криогенных установок): Учебное пособие. – СПб.: СПбГАХПТ, 1995. – 65 с.

6. Кислород. Справочник в двух частях. Под ред. Д. Л. Глизманенко. М., «Металлургия», 1967.

Распечатка 1. Расчёт основного теплообменника.

Распечатка 2. Расчёт теплообменника – ожижителя.

Распечатка 3. Расчёт переохладителя.

Распечатка 4. Расчёт процесса ректификации в нижней колонне.

Распечатка 5. Расчёт процесса ректификации в верхней колонне.

Распечатка 6. Расчёт конденсатора – испарителя.

Распечатка 7. Расчёт переохладителя кислорода.