ния радиационных дефектов (Еd), а время жизни электронных воз-буддений в элементарной ячейке (
) больше периода колебаний кристаллообразующих частиц (

), то электрон-колебательное взаимодействие может привести к распаду электронного возбуждения на френкелевские дефекты. Следовательно, неравенства
Ее>Еd и

можно рассматривать как приближенные устовия возможности распада электронных возбуждений с ровдением дефектов за счет электрон-колебательных взаимодействий [21].
С этой точки зрения объяснима низкая эффективность прямого дефектообразования при распаде высокоэнергетических электронных возбуаздений. В этом случае выполняется первое неравенство ( Ее>Еd) но не выполняется второе: подавляющее большинство сысокоэнергети-ческих электронных возбуждении имеет очень малое время жизни, либо слишком короткое время жизни в фиксированной элементарной ячейке кристалла.
Особенно благоприятна ситуация для распада тех электронных возбуждении, которые переходят в автолокализованное состояние. Для них условие

явно выполняется. Установлено, что автоло-кализованные экситоны существуют в галоидных солях щелочных и щелочноземельных металлов, в гидриде лития, в некоторых галоидных солях свинца и серебра. Вое эти системы имеют низкую радиационную стойкость. Ионные кристаллы, для которых автолокализация экситонов отсутствует ( MgO, Al2, O3
, ), имеют исключительно высокую радиационную устойчивость.