Нічого не поробиш, така відмінність між рівним нулю чотирьохвимірним інтервалом і відмінною від нуля відстанню на одній і тій самій просторовій діаграмі, не відразу ж укладається в свідомості. Але нехай вас це не лякає, так як закони спеціальної теорії відносності забороняють матеріальним об’єктам, які мають масу спокою, рухатись з швидкістю світла. Для таких об’єктів, які відправляються в путь з точки О, визначена раніше величина s2 виходить від’ємна. Щоб уникнути цієї незручності, перевизначимо s2, прийнявши її рівною раніше визначеній величині, але взятій зі знаком “мінус”, і, не дивлячись на таке перевизначення, будемо всеодно s будемо називати інтервалом.
Парадокс близнюків.
Розглянемо відому релятивістську задачу – парадокс близнюків. Один з близнюків залишається у себе вдома на Землі, а інший відправляється в космічну подорож. Близнюк-мандрівник залишає Землю в космічному кораблі, летить з великою швидкістю, скажімо, рік, потім розвертає назад, знову летить рік у напрямку до Землі і, накінець, приземляється. В ході своєї мандрівки він постарів на два роки. Яким же є його здивування, коли він зустрівшись з своїм братом-домосідом, знаходить, що той постарів на п’ятдесят років і тепер на сорок вісім років старше за нього.
Спочатку розглянемо це явище з точки зору ефекта уповільнення ходу годинника, визваного відносним рухом спостерігачів. Близнюк-мандрівник – це своєрідні біологічні часи; те саме відноситься і до близнюка-домосіда. Якщо таке порівняння вам не імпонує, то можна припустити, що близнюки мають годинники, які можуть відраховувати роки, які пройшли, і тоді ці годинники підтвердять існування суттєвої різниці їх віку. З точки зору близнюка-домосіда, годинник і процес старіння мандрівника будуть повільнішими, ніж його.
Але можна заперечити, що уповільнення годинників – однакова для обох. Так як кожен з спостерігачів в праві заявити, що саме часи іншого йдуть повільніше, чим його власні. В зв’язку з цим розглянемо цю ситуацію з точки зору близнюка-мандрівника. Тепер вже він виявиться в ролі близнюка-домосіда (але його домом буде ракета), а його брат в ролі близнюка-мандрівника (космічним кораблем якого буде Земля). Тоді при зустрічі близнюків тепер вже на два роки постаріє близнюк, який знаходився на Землі, а на п’ятдесят – близнюк на ракеті. Так що останній буде дуже здивований, коли, повернувшись на Землю, виявить, що не все так, як він уявляв, і його брат виявився не старшим, а набагато молодшим за його.
В дійсності ж близнюків не можна рахувати повністю рівноправними, так як припускалось раніше. Між ними є суттєва відмінність, яка найбільш сильно виражається при різкій зміні (скажімо на протязі всього 30 секунд) напрямку руху корабля близнюка-мандрівника. В цьому випадку мандрівник буде під дією потужної гальмівної сили, яка більше наж в міліон разів перевищує силу земного тяжіння, так що він буде вмить роздавлений об стінку кабіни свого корабля. І якщо подивитись на ту ж ситуацію з точки зору мандрівника, коли його роль виконує близнюк-домосід, то виявиться, що той не відчуває дії ніякої смертельно небезпечної сили.
А тепер розглянемо ту ж проблему, але з просторово-часової точки зору. Тут передусім слід наголосити увагу на те, що близнюк-мандрівник зовсім не старіє повільніше, чим його брат. Вони обидва старіють зовсім однаково. Якби ми зіткнулись з близнюками, які старіють в різному темпі, то нам би не бело б потреби посилати одного з них в далеку мандрівку. Без мандрівки можна було б обійтись і у тому випадку, коли ми дали б близнюку-мандрівнику годинника, який попередньо був би відрегульований так, щоб відставав від годинника домосіда, навіть знаходячись в стані спокою відносно них.
Чим же тоді пояснити, що близнюк-мандрівник виявився при зустрічі молодше свого брата-домосіда? Перед тим, як дати відповідь на це питання, розглянемо приклад. Нехай один водій вирішив їхати з пункта А в пункт С напряму, тоді як другий поїхав спочатку з пункта А в пункт В, потім з пункта В в пункт С. Тоді при порівнянні своїх лічильників кілометражу вони побачать, що хоча і той, і інший стартували в пункті А і прибули в пункт С, тим не менше вони пройшли різний шлях. І ніхто з них при цьому ніскільки нездивований.А тепер давайте накреслимо просторові лінії близнюків на діаграмі Мінковського. Вони виходять з події А, якій відповідає старт космічного корабля, і закінчують в події С, якій відповідає приземлення корабля і зустріч близнюка-домосіда з братом-мандрівником. “лічильниками” в даному випадку являються самі близнюки або їх годинники, які ведуть відлік свого особистого часу, а значить, і вік кожного з них. АС – це просторова лінія близнюка-домосіда, а АВС – просторова лінія близнюка-мандрівника. І не має нічого дивного в тому, що час для АС відрізняється від часу для АВС.
Однак дещо тут може здатися дивним. В момент повернення на Землю близнюк-мандрівник повинен виявитись молодшим від свого брата-домосіда. Виходячи з того, що просторова лінія АВС довша, чим АС, то слідувало б, що в момент зустрічі мандрівник буде скоріше всього старшим за свого брата. Вся справа в тому, що при спробах накреслити діаграму Мінковського на простому листку паперу ми, як уже відмічалось, обов’язково приновимо викривлення, про які не слід забувати. Згадаємо, наприклад, що час вздовж просторових ліній, які лежать на світловому конусі, рівні нулю. В даному випадку виявляється, що в реальному просторі-часі інтервал АВС коротший, ніж АС.
Розглянуте нами передбачення спеціальної теорії відносності було підтверджено експериментально, правда, при дещо більш загальних обставинах – при наявності сили тяжіння. В загальних рисах ідея експерименту заключалась в наступному: одні виключно точні атомні часи залишали на Землі, а інші, ідентичні першим, розміщували на борту реактивного літака, який здійснював кругосвітний політ. Коли атомний хронометр-мандрівник “зустрівся” з своїм близнюком-домосідом, то виявилось, що він “відстукав” менше часу, при чому на величину, яка в точності узгоджується з передбаченнями теорії.
Парадокс шеста і сарая.
Ефект скорочення розмірів рухомих тіл породив багато парадоксів в теорії відносності. Розглянемо один із них – парадокс шеста і сарая.
Візьмемо шест АВ довжиною L=20 м і будемо рухати його з такою швидкістю, щоб в системі К він виявився довжиною n=10 м. Тоді в деякий момент цей шест повністю розміщується в сараї, довжина якого також 10 м. Однак в системі К’ овжина сарая буде рівна 5 м. Як можна сховати 20-метровий шест в 5-метровому сараї?
Подібні “парадокси” швидко розв’язуються, якщо виділити в явищі саме суттєве: в задачі розглядається чотири події, пов’язані з точками А, В, Е, F шеста АВ і лінійки EF, кінці якої E i F визначають границі сарая. Нехай події В, F i A, E одночасні в системі К. Тоді в системі К’ вони вже не будуть одночасні і питання, поставлене в умові, не має сенсу. Корисно, однак, вивчити послідовність подій в двух системах координат.
На рисунку зображено просторові лінії точок A, B, E, F в системі К:xF=n, xE=0, xB=βct, xA=-n+βct. (1)
Поскільки L=nγ, то по умові задачі γ=2, β=
. Припускаючи, що xF(t1)=xB(t1) або xE(t1)=xA(t1), знайдемо момент часу , в який шест і лінійка накладаються один на одного. Підставляючи (1) в формули отримаємо просторові лінії подій в системі К’:В цій системі шест довжиною L=20 м нерухомий, а сарай довжиною
=5 м рухається в від’ємному напрямі осі х’. З рисунка видно, що в момент t’=0 кінець В шеста увійде в сарай і вийде з нього в момент , коли події B i Fодночасні, а події x’E(ct’1) i x’A(ct’1) – неодночасні. Потім сарай рухається вздовж стержня і в момент проходять одночасні події x’В(ct’2)= x’А(ct’2) – передня стінка сарая порівнялась з кінцем А шеста.ЛІТЕРАТУРА
1. Гоффман Б. Корни теории относительности. /Пер. с англ. – М.: Знание, 1987. – с.178-195.
2. Павленко Ю.Г. Начала физики. – М.: Изд-во Моск. ун-та, 1988. – с.522-525.