Смекни!
smekni.com

Оптические квантовые генераторы (стр. 3 из 7)

Важной характеристикой импульсного твердотельного ОКГ яв­ляется пороговая энергия накачки. Под ней понимают минималь­ную величину энергии питания ламп за одну вспышку, при кото­рой возникает генерация. Пороговая энергия накачки зависит от размеров кристалла, его температуры, типа используемой лампы, конструкции системы накачки, добротности резонатора и т.д.

Обычно пороговая энергия рубиновых ОКГ составляет десятки и coтни джоулей. С увеличением энергии накачки энергия ОКГ ограни­чивается возможностями системы накачки, размерами кристалла, его качеством, световой прочностью зеркал и другими факторами.

В ОКГ с кристаллом диаметром 2 см и длиной 30 см генери­руемая за импульс энергия достигает десятков джоулей. При дли­тельности импульса ~ I мс пиковая мощность генерации составля­ет десятки киловатт. В ОКГ о модулированной добротностью (бу­дут рассмотрены далее) импульсная мощность достигает десятков и более мегаватт. Коэффициент полезного действия, определяемый как отношение излучаемой энергии ОКГ к потребляемой им элек­трической энергии, для рубиновых ОКГ равен единицам процентов. Малый КПД связан во многом с низкой эффективностью системы на­качки. Используемые в настоящее время импульсные газоразрядные лампы накачки преобразуют в свет около 50% потребляемой элек­трической энергии. Примерно 30% световой энергии ламп, т.е. 15% электрической энергии, соответствует полосам поглощения рубина. Оптическая часть системы накачки обеспечивает передачу в рубин приблизительно 00% полезной энергии. Так что реально всего не­сколько процентов расходуемой электрической энергии идет непо­средственно на накачку рубина.

И

Излучение рубиновых ОКГ в зависимости от времени имеет сложный "пичковый" характер. В пределах каждого импульса накач­ки обычно оно представ­ляет собой хаотический набор разных по ампли­туде пичков, всплесков интенсивности генерации с длительностью и ин­тервалом между ними по­рядка микросекунд.

На рис.75 приведе­ны осциллограммы интен-сивностей накачки (а) и выходного излучения (б).

На характер этого режима влия­ют многие факторы, в частности конфигурация резонатора, рас­пределение интенсивности накачки по объему кристалла, его тем­пература, однородность и т.д. Так, эксперимент показывает, что хаотичность пульсации излучения значительно уменьшается вплоть до регулярного следования пичков при использовании в ОКГ от­крытых резонаторов, характеризующихся большим числом высоко-добротных типов колебаний (например, резонатора с одинаковыми сферическими зеркалами, расположенными на расстоянии, меньшем их удвоенного радиуса кривизны). Получению режима регулярных пульсации излучения способствует также однородное распределе­ние интенсивности накачки в рабочем кристалле и понижение его

температуры.

Важной характеристикой работы ОКГ является картина рас­пределения поля по площади сечения выходного пучка. Она опре­деляет диаграмму направленности выходного излучения. Минималь­ная ширина диаграммы направленности соответствует основному поперечному ТЕМ00q типу колебаний. В случае использования пло­ских круглых зеркал ширина диаграммы направленности по уровню половинной мощности для ТЕМ00q типа равна Т = 0,63 Л/d рад ( d - диаметр пятна на зеркале; Л - длина волны). При d = I см, Л = 0,6943 мкм Т = 4«10~4 рад, т.е. примерно 1,5'. Практи­чески ширина диаграммы излучения для рубиновых ОКГ превышает величину, вычисленную по этой формуле, раз в десять .Столь срав­нительно большая ширина диаграммы направленности связана с воз­буждением высших типов колебаний, оптическим несовершенством реальных рубиновых кристаллов (наличием в них центров рассея­ния и градиентов преломления по площади сечения образца). Рас­пределение поля по площади зеркала часто имеет весьма сложную мозаичную картину, которая в процессе генерации меняется от пичка к пичку.

Излучение рубиновых ОКГ обычно частично иди полностью по­ляризовано. Поляризация излучения определяется анизотропией рубиновых кристаллов, и ее характер зависит от угла ориентации оптической оси кристалла относительно геометрической оси стер­жня, вдоль которой распространяется свет в резонаторе. Обычно используются рубиновые стержни с ориентацией оси 60 или 90°. Излучение в ОКГ с такими стержнями имеет линейную поляризацию с электрическим вектором, перпендикулярным плоскости, в кото­рой лежат оптическая ось ж ось стержня. В ОКГ с кристаллом 0-градусной ориентации излучение неполяризовано.


Оптические к вантовые генераторы на стекле

Активированном неодимом, находят такое же широкое распространение, как рубиновые.Это обусловлено до­стоинствами стекла: простотой изготовления образцов больших размеров (до нескольких сантиметров в диаметре и длиной до ме­тра и более), высокой оптической однородностью, возможностью введения рабочих частиц в необходимых концентрациях с равно­мерным распределением по объему.

Недостатком стекла является низкая теплопроводность, что затрудняет создание генераторов большой средней мощности и ограничивает его работу режимом одиночных импульсов.

Средняя мощность в импульсе генерации достигает единиц мега­ватт. Коэффициент полезного действия таких генераторов состав­ляет доли процента, их выходное излучение, так же как и у ру­биновых ОКГ, носит пичковый характер. Ширина спектра излучения при больших уровнях накачки достигает 20 нм. Излучение ОКГ на неодимовом стекле неполяризовано. Это связано с хаотической ориентацией ионов неодима и оптической однородностью стекла.

Угловая расходимость выходного луча ОКГ на неодимовом стек­ле достигает обычно единиц угловых минут, что значительно мень­ше величины расходимости излучения рубиновых ОКГ. Это обуслов­лено более высокой оптической однородностью стекла.

Газовые оптические квантовые генераторы

В газовых ОКГ, как следует из названия, активной усиливающей средой является газ. Рабочими частицами, переходы между энергетическими состояниями которых определяют генерацию, слу­жат атомы, ионы или молекулы. В соответствии с этим говорят об атомных, молекулярных и ионных ОКГ.

В настоящее время предложено множество методов создания инверсии населенвостей в газовых средах, использувдих электри­ческий разряд, энергию химических реакций, оптическую накачку и т.д.

Наиболее часто инверсия в газовых ОКГ осуществляется в ре­зультате электрического разряда, создаваемого непосредственно в самой рабочей среде. Основными механизмами, приводящими к из­быточной населенности верхних энергетических уровней в газоразрядных ОКГ, являются следующие процессы:

I. Неупругие столкновения электронов с частицами газа (со­ударения первого рода), сопровождаемые передачей кинетической энергии движения электронов частицам, которые переходят в воз­бужденное состояние. Символически такой процесс обозначают

Соударения первого рода приводят не только к прямому возбужде­нию, но и определяют ступенчатое возбуждение частиц. При не-yupyl'их столкновениях электрона е с возбужденной частицей А* последняя переводится в более высокое энергетическое состоя­ние А**:

Процессы возбуждения частиц путем электронных неупругих соуда­рений первого рода играют основную роль во всех газоразрядных ОКГ.

2. Соударения второго рода между разнородными атомами сме­си двух газов. При соударении атомов, один из которых - А* -находятся в возбужденном состоянии, а другой - В - в основ­ном, происходит передача возбуждения от первого атома ко вто­рому. При этом первоначально возбужденный атом переходит в ос­новное состояние, а партнер по соударению - в возбужденное со­стояние :



Этот процесс происходит эффективно лишь в случае, когда энер­гии возбужденных состояний взаимодействующих атомов совпадают с точностью до величин порядка kT ( Т - температура газовой смеси). Примером газового оптического квантового генератора, в котором используется механизм, описываемый формулой (122), является широко используемый гелий-неоновый ОКГ.

3. Неупрутие атомно-молекудярные соударения, приводящие к диссоциации молекул с переходом одного из атомов в возбуж­денное состояние

На рис.80 показано схематическое устройство газового ОКГ. Он состоит из двух основных частей: открытого резонатора, образованного зеркалами 3^ и 3^ , и газоразрядной камеры, напол­ненной рабочей смесью He-Ne .

Газоразрядная камера представляет собой кварцевую или стеклянную трубку (обычно длиной от 1,5+2 дм до 1,&г2 м и диа­метром до &т8 мм), с торцов закрытую плоскопараллельными опти­ческими окнами, наклоненными под углом Брюстера к оси трубки. Такие окна имеют пренебрежимо малые потери энергии на отраже­ние для волны, поляризованной в плоскости падения, и практиче­ски делают невозможной генерацию излучения, поляризованного в перпендикулярной плоскости.

Иногда зеркала укрепляют на концах газоразрядной трубки. Однако такое расположение зеркал значительно усложняет конст­рукцию вакуумной части ОКГ (необходимо использовать сильфоны для юстировки зеркал) и создает технические трудности для сме­ны зеркал, изменения расстояния между ними, введения в резона­тор дополнительных элементов (диафрагм, линз и т.п.). Поэтому конструкции ОКГ с внутренними зеркалами применяются редко и главным образом тогда, котаа необходимо получить генерацию с произвольной поляризацией излучения.