Смекни!
smekni.com

Оптические квантовые генераторы (стр. 2 из 7)

Для создания инверсии рабочее вещество облучают интенсив­ным светом с частотным спектром, соответствующим переходу меж­ду уровнями 1—>3. С уровня 3 атомы переходят на уровень 2, . Этот переход, как правило, является безизлучательным. Энергия при этом идет на нагревание рабочего тела. При достаточной ин­тенсивности накачки на уровне 2. удается получить больше ато­мов, чем их остается на основном уровне, т.е. возникает инвер­сия населенностей для рабочей пары уровней.

В активных средах, описываемых четырехуровневой схемой (см .рис. 71,б), переход 3-2 является рабочим, верхний уро­вень так же, как в трехуровневой схеме, представляет собой широкую полосу. Второй уровень находится от основного на энер­гетическом расстоянии, значительно большем kT. Поэтому при тер­модинамическом равновесии он практически не заселен. Большинство частиц, попавших на уровень 4 , затем переходит безизлучательным путем на уровень 3 , что при соответствующих условиях приводит к инверсии населенностей для пары уровней 3-2.

В четырехуровневой системе по сравнению с трехуровневой легче создать инверсию населенностей, так как нижний рабочий уровень не заселен. Для этого необходимо перевести незначитель­ное количество частиц с основного уровня на верхний рабочий. В трехуровневой системе для получения инверсии требуется пере­бросить на верхний рабочий уровень с основного по крайней мере половину частиц.

На рис.72, а приведена схема ОКГ на твердом теле. Она вклю­чает оптический резонатор, рабочее тело 1 , лампу накачки 2 с отражателем 3 , систему ее питания и зажигания разряда. Опти­ческий резонатор образован зеркалами r1 и r2. Обычно в них ис­пользуются многослойные интерференционные диэлектрические отражающие покрытия, в которых показатель преломления переменно меняется от слоя к слою. Слои наносят вакуумным напылением или химическим путем, они имеют толщину, равную четверти длины вол­ны в диэлектрике на рабочей частоте. С увеличением количества слоев коэффициент отражения возрастает. При n=15 и больше он превышает 99%.

Иногда в качестве отражающих покрытий используются сереб­ряные пленки, но они позволяют получать коэффициент отражения не выше 95-96% и в отличие от интерференционных диэлектрических покрытий имеют большое поглощение, а потому часто выгорают в процессе работы. Одно из зеркал резонатора делается полупрозрачным для вывода энергии. Коэффициент пропускания выход­ного зеркала выбирается так, чтобы вывести из ОКГ максимальную энергию. При малом коэффициенте пропускания будет выводиться лишь незначительная доля энергии из резонатора. В случае боль­шого пропускания ухудшаются условия возбуждения колебаний. При некотором пропускании выходного зеркала генерация срывается, так как не выполняются пороговые условия. Оптимальный коэффи­циент пропускания, при котором выводится максимальная энергия генерации, зависят от качества кристалла, его длины, энергии накачки. Оптимальное пропускание выходного зеркала для боль­шинства твердотельных ОКГ составляет 20-60%.

Рабочее тело выполняют в форме стержня с хорошо обрабо­танными торцевыми поверхностями, имеющими плоскопараллельную или сферическую форму. Точность отклонения обработки торцевых поверхностей от заданной формы лежит в пределах десятых долей длины волны. Параллельность плоских торцов выдерживается с точ­ностью до нескольких угловых минут.

Иногда вместо внешних зеркал используются отражающие по­крытия, нанесенные непосредственно на торцы рабочего тела. Бо­ковая поверхность рабочих стержней частично или полностью де­лается матовой, чтобы предотвратить возбуждение типов колеба­ний, распространяющихся с отражением от боковых поверхностей.

Инверсия населенностей в рабочем теле создается методом оптической накачки. Как отмечено выше, пороговая мощность на­качки имеет величину до сотен ватт на кубический сантиметр ра­бочего вещества ОКГ. Столь высокая плотность мощности накачки приводит к сильному нагреванию рабочих тел ОКГ. Это вызывает трудности, часто непреодолимые, в реализации непрерывно­го режима накачки твердотельных ОКГ. Поэтому ОКГ на твердом теле, как правило, работают в режиме одиночных или периодиче­ски повторяющихся импульсов. Источником накачки служат газо­разрядные лампы. Наиболее часто используются импульсные ксено-новые лампы, обладающие наилучшей эффективностью преобразова­ния электрической энергии в световое излучение, спектральный состав которого соответствует линиям поглощения используемых активных сред.

Лампы конструктивно выполняются в виде прямой или свитой в спираль трубки с введенными на концах электродами. Для ини­циации разряда в лампах предусматривается специальный внутрен­ний или внешний поджигающий электрод. Лампы и рабочий стержень размещают внутри отражателя, обеспечивающего эффективность пе­редачи световой энергии накачки в активную среду. При исполь­зовании спиральных ламп рабочее тело помещается внутри них, а отражатель, выполняемый в виде кругового цилиндра, охватывает лампу.

Более эффективны системы с прямыми лампами и отражателями в виде эллиптического цилиндра (рис.72, б), обеспечивающего фокусировку излучения ламп на рабочий образец. Для этого рабо­чее тело и лампы размещаются вдоль фокусных осей цилиндра.(Рис. 72,в иллюстрирует систему, в которой содержатся несколько ламп и одно рабочее тело.) Столь же эффективной оказывается более простая система, в которой лампа и активное тело находятся ря­дом внутри узкого отражателя с круглым или овальным сечением. Отражатель выполняется из серебряной или алюминиевой фольги. В конструкциях систем накачки очень часто предусматриваются ох­лаждение рабочего тела и ламп путем обдува их воздухом ахи об­текания хладоагентом.

Питание ламп осуществляется от батареи конденсаторов Со(см.рис.72,а ), заряжаемых часто от сети переменного напряже­ния через повышающий трансформатор Тр. и выпрямительный эле­мент Д. . Нормальное напряжение заряда конденсаторов должно быть меньше напряжения самопробоя импульсной лампы накачки. За­жигание разряда в лампе осуществляется подачей на поджигапщий электрод высоковольтного инициирующего импульса от управляющей схемы. На рис.72,а последняя состоит из конденсатора С , за­ряжаемого от сети через диод Д2, тиратрона с холодным катодом и импульсного трансформатора Тр1. При замыкании кнопки К ти­ратрон зажигается, конденсатор с разряжается через первичную обмотку трансформатора и на вторичной обмотке появляется высо­ковольтный импульс.


Рубиновые ОКГ

Были первыми практически осу­ществленными оптическими квантовыми генераторами. В настоящее время ОКГ на рубине - наиболее распространенные и широко ис­пользуемые в практике. Это объясняется следующими достоинства­ми рубиновых ОКГ: излучение происходит в удобном спектральном диапазоне (в видимой области), обеспечивается большая Энергия генерации, рубиновые кристаллы легко получить высокого качест­ва, они имеют высокую прочность и не требуют охлаждения Рубив представляет собой кристалл корунда Аl203,в котором часть ио­нов Al3+ замещена трехвалентными ионами хрома Сг3- Активными частицами, определяющими генерацию, являются ионы хрома. В ОКГ используют кристаллы розового рубина о массовой концентрацией Сr2О3 относительно Al2O3 , примерно равной 0,05 массы что составляет 1,6*1019 ионов хрома в I см3.

На рис.73 приведена система нижних энергетических уровней ионов хрома. Она существенно отличается от системы уровней сво­бодных ионов, что связано со взаимодействием ионов с сильными

полями кристаллической решетки. Обозначения уровней, приведен­ные на рис.73, заимствованы из теории групп, которая использу­ется при расчете, и не связаны непосредственно с принятыми обо­значениями уровней свободных ионов. Рабочим является переход 2Е->4А2. Состояние 2Е является метастабильным. При комнатной температуре его время жизни составляет около 3 мс. Уровень 2E в действительности состоит из двух подуровней Е и 2А , раз­деленных промежутком 29 см-1. Переходы с этих подуровней в основное состояние 4А2 соответствуют линиям излучения света R1 и R2 с длиной волны 694,3 и 692,9 нм при температуре 300°С.

Уровень 4F2 состоит из шести подуровней, которые из-за неоднородности кристаллического поля настолько уширены, что пе­рекрывают друг друга, превращая его в полосу. Уровень 4F1 так­же представляет собой полосу (см.рис.73).

Обычно генерация происходит на R1 -линии, для которой легче реализуются пороговые условия. Это связано с тем, что между ионами, находящимися на подуровнях Е и 2-4 , ответствен­ных за линии ^ и Rn , существует интенсивный обмен. В результате населен­ности подуровней Е и устанавливаются в соответствии с законом Больцмана и нижний подуровень имеет большую насе­ленность. Возникновение генерации на частоте R1 - линии пред­отвращает возбуждение генерации на R2-линии, так как интен­сивные релаксационные процессы вызывают переход ионов с 2A на Е и населенность уровня не может достигнуть порогового значения.

Рубиновые ОКГ работают, как правило, в режиме разовых и периодических импульсов. Имеются лишь отдельные разработки ге­нераторов непрерывного действия. Для рубиновых ОКГ характерна длительность импульсов порядка миллисекунд, частота следова­ния обычно не превышает сотни герц. Ее ограничивает нагревание кристалла и ламп накачки.