Смекни!
smekni.com

Оптические инструменты, вооружающие глаз (стр. 4 из 4)

2.4. Дифракционный предел разрешения оптических инструментов

2.4.1. Разрешающая способность телескопа.

Под разрешающей способностью телескопа принято понимать разрешающую способность его объектива. Телескопы предназначены для наблюдения удаленных объектов (звезд). Пусть с помощью телескопа, объектив которого имеет диаметр D, рассматриваются две близкие звезды, находящиеся на угловом расстоянии . Изображение каждой звезды в фокальной плоскости объектива имеет линейный размер (радиус пятна Эйри), равный lF/D. При этом центры изображений находятся на расстоянии y*F. Как и в случае спектральных приборов, при определении дифракционного предела разрешения используется условный критерий Рэлея (рис. 2.4). Разница состоит в том, что в случае спектральных приборов речь идет о разрешении двух близких спектральных линий по их изображениям, а в случае оптических инструментов – о разрешении двух близких точек объекта.


Согласно критерию Рэлея, две близкие точки объекта считаются разрешенными, если расстояние между центрами дифракционных изображений равно радиусу пятна Эйри.

Рисунок 2.4.

Предел разрешения изображений двух близких звезд по Рэлею.

Применение критерия Рзлея к объективу телескопа дает для дифракционного предела разрешения:


(2.6)

Следует отметить, что в центре кривой суммарного распределения интенсивности (рис. 2.4) имеется провал порядка 20 % и поэтому критерий Рэлея лишь приблизительно соответствует возможностям визуального наблюдения. Опытный наблюдатель уверенно может разрешать две близкие точки объекта, находящиеся на расстоянии в несколько раз меньшем ymin.

Числовая оценка дает для объектива диаметром D = 10 см, ymin = 6,7*10-6 рад = 1,3”, а для D=102 см, ymin = 0,13”.

Этот пример показывает, насколько важны большие астрономические инструменты. Крупнейший в мире действующий телескоп-рефлектор имеет диаметр зеркала D = 6 м. Теоретическое значение предела разрешения такого телескопа ymin = 0,023”. Для второго по величине телескопа-рефлектора обсерватории Маунт-Паломар с D = 5 м теоретическое значение ymin = 0,028”. Однако, нестационарные процессы в атмосфере позволяют приблизиться к теоретическому значению предела разрешения таких гигантских телескопов лишь в те редкие кратковременные периоды наблюдений. Большие телескопы строятся главным образом для увеличения светового потока, поступающего в объектив от далеких небесных объектов.

2.4.2. Разрешающая способность глаза.


Все сказанное выше о пределе разрешения объектива телескопа относится и к глазу. На сетчатке глаза при рассмотрении удаленных объектов формируется дифракционное изображение. Поэтому формула (2.6) применима и к глазу, если под D понимать диаметр зрачка d3p . Полагая d3p = 3 мм, l = 550 нм, найдем для предельного разрешения человеческого глаза:

Известно, что сетчатка глаза состоит из светочувствительных рецепторов конечного размера. Полученная выше оценка находится в очень хорошем согласии с физиологической оценкой разрешающей способности глаза. Оказывается, что размер дифракционного пятна на сетчатке глаза приблизительно равен размеру светочувствительных рецепторов. В этом можно усмотреть мудрость Природы, которая в процессе эволюции стремится реализовать оптимальные свойства живых организмов.

2.4.3. Предел разрешения микроскопа

В случае микроскопа объект располагается вблизи переднего фокуса объектива. Интерес представляет линейный размер деталей объекта, разрешаемых с помощью микроскопа. Изображение, даваемое объективом, располагается на достаточно большом расстоянии L>>F. У стандартных микроскопов L = 16 см, а фокусное расстояние объектива – несколько миллиметров. Объект может располагаться в среде, показатель преломления которой n > 1 (иммерсия).

Радиус пятна Эйри в плоскости изображения равен 1.22lL/D, где D – диаметр объектива. Следовательно, микроскоп позволяет разрешить две близкие точки объекта, находящиеся на расстоянии l, если центры их дифракционных изображений окажутся на расстоянии l', превышающим радиус дифракционного пятна (критерий Рэлея).


(2.7)

Здесь u’= D/2L – угол, под которым виден радиус объектива из плоскости изображения (рис. 2.5).

Рисунок 2.5.

К условию синусов Аббе.

Чтобы перейти к линейным размерам самого объекта, следует воспользоваться так называемым условием синусов Аббе, которое выполняется для любого объектива микроскопа:


(2.8)

При написании последнего выражения принята во внимание малость угла u'. Отсюда для предела разрешения объектива микроскопа получаем выражение:


(2.9)

Угол 2u называют аппретурным углом, а произведение n*sinu – числовой апертурой. У хороших объективов угол u близок к теоретическому пределу u=p/2. Полагая для примера показатель преломления иммерсионной жидкости n = 1,5, получим оценку: lmin=0,4l.

2.4.4. Замечание о нормальном увеличении оптических инструментов.

Как в телескопе, так и в микроскопе изображение, полученное с помощью объектива, рассматривается глазом через окуляр. Для того, чтобы реализовать полностью разрешающую способность объектива система окуляр–глаз не должна вносить дополнительных дифракционных искажений. Это достигается целесообразным выбором увеличения оптического инструмента (телескопа или микроскопа). При заданном объективе задача сводится к подбору окуляра. На основании общих соображений волновой теории можно сформулировать следующее условие, при котором будет полностью реализована разрешающая способность объектива: диаметр пучка лучей, выходящих из окуляра не должен превышать диаметра зрачка глаза d3p . Таким образом, окуляр оптического инструмента должен быть достаточно короткофокусным.


Поясним это утверждение на примере телескопа. На рис. 2.6 изображен телескопический ход лучей.

Рисунок 2.6.

Телескопический ход лучей


Две близкие звезды, находящиеся на угловом расстоянии ymin в фокальной плоскости объектива изображаются дифракционными пятнами, центры которых располагаются на расстоянии yminF1. Пройдя через окуляр, лучи попадут в глаз под углом yminF1/F2 . Этот угол должен быть разрешимым для глаза, зрачок которого имеет диаметр d3p. Таким образом:

Здесь g = F1/F2 – угловое увеличение телескопа. Отношение D/g имеет смысл диаметра пучка, выходящего из окуляра. Знак равенства в (4.10) соответствует случаю нормального величения.


(2.11)

В случае нормального увеличения диаметр пучка лучей, выходящих из окуляра, равен диаметру зрачка d3p . При g>gN в системе телескоп–глаз полностью используется разрешающая способность объектива. Аналогичным образом решается вопрос об увеличении микроскопа. Под увеличением микроскопа понимают отношение углового размера объекта, наблюдаемого через микроскоп, к угловому размеру самого объекта, наблюдаемого невооруженным глазом на расстоянии наилучшего зрения d, которое для нормального глаза полагается равным 25 см. Расчет нормального увеличения микроскопа приводит к выражению:


(2.12)

Вывод формулы (2.12) является полезным упражнением для студентов. Как и в случае телескопа, нормальное увеличение микроскопа есть наименьшее увеличение, при котором может быть полностью использована разрешающая способность объектива. Следует подчеркнуть, что применение увеличений больше нормального не может выявить новые детали объекта. Однако, по причинам физиологического характера при работе на пределе разрешения инструмента целесообразно иногда выбирать увеличение, превосходящее нормальное в 2–3 раза.

Заключение

Практическое значение оптики и её влияние на другие отрасли знания исключительно велики. Изобретение телескопа и спектроскопа открыло перед человеком удивительнейший и богатейший мир явлений , происходящих в необъятной Вселенной. Изобретение микроскопа произвело революцию в биологии. Фотография помогла и продолжает помогать чуть ли не всем отраслям науки. Одним из важнейших элементов научной аппаратуры является линза. Без неё не было бы микроскопа, телескопа, спектроскопа, фотоаппарата, кино , телевидения и т.п. не было бы очков, и многие люди, которым перевалило за 50 лет, были бы лишены возможности читать и выполнять многие работы , связанные со зрением.

Область явлений, изучаемая физической оптикой, весьма обширна. Оптические явления теснейшим образом связаны с явлениями, изучаемыми в других разделах физики, а оптические методы исследования относятся к наиболее тонким и точным. Поэтому неудивительно , что оптике на протяжении длительного времени принадлежала ведущая роль в очень многих фундаментальных исследованиях и развитии основных физических воззрений. Достаточно сказать, что обе основные физические теории прошлого столетия - теория относительности и теория квантов - зародились и в значительной степени развились на почве оптических исследований. Изобретение лазеров открыло новые широчайшие возможности не только в оптике, но и в её приложениях в различных отраслях науки и техники.

Источники:

http://www.markbook.chat.ru

http://www.college.ru

http://som.fio.ru