Смекни!
smekni.com

Определение коэффициента поверхностного натяжения методом компенсации давления Лапласа (стр. 6 из 6)

Искривлённая поверхность оказывают на жидкость дополнительное (лапласово) давление, действующее в направлении на центр кривизны поверхности. Рассмотрим сферическую каплю жидкости радиуса r. Её поверхность, стремясь сократиться оказывает на жидкость добавочное давление рл. при уменьшении площади поверхности капли на dS поверхностные силы совершают изометрическую работу dА, равную убыли свободной энергии поверхности: dА=sdS. С другой стороны, dА=рлdV, где dV – изменение объёма капли. Учитывая

(dV=4pr2dr) и S=4pr2 (dS=8prdr), получаем 8prsdr=4pr2pлdr, следовательно:

. (5)

Капиллярами называют трубки, радиус кривизны мениска жидкости в которых сравним с радиусом трубки. В них лапласово давление вызывает поднятие смачивающих и опускание несмачивающих жидкостей. Уровень жидкости в капилляре изменяется на такую величину h, чтобы гидростатическое давление p=rgh уравновесило лапласово давление

. Поверхность мениска в капилляре можно считать частью сферы (рис. 26), поэтому радиус кривизны мениска r=r0/cosj, где r0 – радиус трубки. Получим, что высота поднятия жидкости в капилляре:

. (6)

Измерив высоту h, радиуса капилляра r0»r и зная плотность r, можно определить коэффициент поверхностного натяжения s. Однако точное измерение высоты h затруднено. В данной работе необходимо увеличить давление воздуха в капилляре до тех пор, пока уровни жидкости в капилляре и в сосуде не сравняются. Это произойдёт, когда давление воздуха над жидкостью сравняется с лапласовым. Измерив это давление, можно по формуле (3) вычислить коэффициент s жидкости.

ПРОВЕДЕНИЕ ЭКСПЕРИМЕНТА

1. Измерительным микроскопом определите внутренний диаметр капилляра восемь раз, поворачивая окуляр микроскопа со шкалой. Результаты измерений занесите в таблицу.

2. Вычислите постоянную К и её абсолютную погрешность.

3. Возьмите из пробирки с водой капилляр и при помощи резиновой груши смочите его изнутри примерно до половины, втянув воду из пробирки.

4. Вставьте верхний конец капилляра в резиновую трубку, а другой опустите в пробирку 1, как показано на рис. 9.1.

5. Поверните кран 3 так, чтобы капилляр сообщался с атмосферой.

6. Соедините краном 3 капилляр с манометром и с помощью сильфона выровняйте уровни жидкости в пробирке и в капилляре. Отсчитайте разность уровней жидкости в коленах манометра H.

7. Повторите измерения 10 раз.

№ опыта

H, м

s, Н/м

Ds, Н/м

1

2

3

4

5

6

7

8

9

10

среднее

8. Вычислите по формуле (6) коэффициент s, найдите его абсолютную и относительную погрешности

9. Сравните найденное значение коэффициента поверхностного натяжения с табличными.

10. Напишите заключение.

r0=998,23 кг/м3 (при t=20 0C),

g=9,81 м/с2.


Заключение

Широкое применение в нашей средней школе фронтальных лабораторных работ по физике в настоящее время является необходимостью. Оно должно привести, согласно современным методическим взглядам, проверенным практикой, к значительному и резкому повышению качества обучения физике; оно будет служить серьёзной опорой для борьбы не на словах, а на деле с «меловым» методом преподавания физики, насаждающим формализм в знаниях учащихся, т.е. отсутствия глубокого понимания самой сущности многих физических явлений. На фронтальных занятиях учащимся прививают правильные начальные практические навыки, которые в дальнейшем могут нормально развиваться и совершенствоваться.

В результате проведённого эксперимента были получены результаты коэффициента поверхностного натяжения, которые сравнимы с табличными данными.

Существующие экспериментальные методы определения коэффициента поверхностного натяжения для обычных школ недостаточны для школ с углублённым изучением физики. Вышеприведенная разработка лабораторной работы поможет учителям в школах с углублённых изучением предмета. Учащиеся таких образовательных учреждений смогут более углублённо ознакомиться с явлением поверхностного натяжения жидкостей.


Литература

1. Ковалёв П.Г. Молекулярная физика, электродинамика. – Ростов: Университетское, 1975.

2. Ахматов А.С. Молекулярная физика. – М., 1963.

3. Покровский А.А., Зворыкин Б.С. и др. Демонстрационные опыты по молекулярной физике и теплоте. – М., 1960.

4. Покровский А.А., Зворыкин Б.С. Фронтальные лабораторные занятия по физике в средней школе. – М., 1956.

5. Бакушинский В.Н. Организация лабораторных работ по физике в средней школе. – М., 1946.

6. Лабораторный практикум по физике / Под ред. Ахматова А.С. – М.: Высшая школа, 1980.

7. Агапов Б.Т., Максютин Г.В., Островерхов П.И. Лабораторный практикум по физике. – М.: Высшая школа, 1982.

8. Евграфова Н.Н., Каган В.Л. Руководство к лабораторным работам по физике. – М.: Высшая школа, 1970.

9. Лабораторные занятия по физике / Под ред. Гольдина Л.Л. – М.: Наука, 1983.

10. Беклемишев А.В. Методика и организация лабораторных занятий по физике в высшей школе. – М.: Советская наука, 1952.

11. Фетисов В.А. Лабораторные работы по физике. – М., 1961.

12. Павлов В.И. Механика, молекулярная физика. М., 1955.

13. Подгорнова И.И. Молекулярная физика в средней школе. М.: Просвещение, 1970.

14. Яковлев В.Ф. Курс физики. Теплота и молекулярная физика. – М.: Просвещение, 1976.

15. Стрючков И.А., Краев П.И. Руководство к лабораторным работам по молекулярной физике. – Ашхабад, 1981.

16. Павленко Ю.Г. Молекулярная физика. – М., 1992.

17. Зайдель А.Н. Ошибки измерений физических величин. – Л.: Наука, 1974.

18. Деденко Л.Г., Керженцев В.В. Математическая обработка и оформление результатов эксперимента. – М., 1977.

19. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. – Л., 1985.


[1] Тонкие поверхностные слои конденсированной фазы, толщина которых не превышает радиуса молекулярного действия, имеют, как известно иную структуру и иные физические свойства, чем вещество внутри фазы.

[2] Плёнка легко разрывается при прикосновении к её поверхности нагретым концом проволоки.

1 Около 30-40 капель в минуту.

2 Стаканчик необходимо поставить на горлышко колбы.