Форма линии стоксова рассеяния имеет вид
(13a) |
Антистоксово излучение на частоте w3 = w2 + wu является результатом комбинационного рассеяния света молекулой, находящейся в возбужденном колебательном состоянии (u=1). При классическом подходе к задаче мы должны найти поляризацию на w3, наведенную электрическим полем:
E(z,t) = 1/2 [E1(z) exp iw1t + E2(z) exp iw2t + E3(z) exp iw3t + к.с.], | (14) |
где w3 - w2 = w2 - w1.
В выражении для поляризации по аналогии с (11) найдем член, соответствующий возбуждению молекулярных колебаний силой, пропорциональной E3 E2*. Из (13) заменой частот и индексов у E получим
(15) |
Важно, что мнимые части (13) и (15) имеют разные знаки, поэтому
антистоксова волна, распространяясь в среде, активной в комбинационном отношении, в присутствии излучения лазера (w2), но в отсутствии стоксова излучения (w1 = w2 - wu) будет затухать.
Существует, однако, еще одна компонента поляризации на частоте w2:
Pнелw3(z) ~ E2 E2 E*1 exp [i(2w2-w1)t] | (16) |
Она не содержит E3 и может рассматриваться как верхняя боковая частота [w2 + (w2 - w1)] в спектре модулированных колебаний диэлектрической проницаемости с несущей w2 и модулирующей w2 - w1 частотами. Эта компонента является источником излучения с частотой w3.
Если дополнить (16) пространственной зависимостью поляризации, то
Pнелw3(z) ~ E2 E2 E*1 exp [-i(2k2-k1)r] | (17) |
Этому члену соответствует поле E3exp(-ik3r), причем
k3 = 2 k2 - k1 | (18) |
Следовательно, антистоксова волна может излучаться только в направлениях, удовлетворяющих условию (18). См. рис.5. А так как |ki| = wi ni / c, то антистоксова компонента распространяется в направлениях, составляющих коническую поверхность с половинным углом b при вершине и осью лазерного луча.
Реальная ситуация сложнее. Помимо наличия стоксовых и антистоксовых компонент высоких порядков, имеет место отклонение от направлений, рассчитанных по формуле (18) из-за эффекта самофокусировки.
Рис.5. Диаграмма для определения направления распространения антистоксова излучения. |
Рис.6. Схема эксперимента по изучению комбинационного рассеяния. 1 - рубиновый лазер; 2 - линза; 3 - ячейка с бензолом; 4 - экран Цвета показаны условно. |
Выше уже упоминалось, что ВКР в среде наступает только при превышении некоторого порога интенсивности электрического поля. Однако измеренная пороговая интенсивность часто оказывается ниже ожидаемой. Расхождения между теорией и экспериментом могут быть весьма значительными: в некоторых жидкостях соответствующие пороги отличаются в сотни и более раз, что обусловлено явлением самофокусировки. В таком случае диаметр пучка по мере распространения в среде уменьшается и на некотором расстоянии пучок собирается в "фокусе". В фокальной области плотности мощности лазерного излучения очень велики и могут привести к разрушению материала. Это явление имеет непосредственное отношение к импульсным лазерам с очень высокой мощностью излучения, поскольку разрушению может подвергаться и активный элемент лазера.
В первой лекции были выведены зависимости c(w,E0) и c(3w,E0) (формулы (23)), на основе которых можно записать:
eобщ = 1 + c + bE2 , | (19) |
тогда
nобщ = Цeобщ ¦ n + n2 E2 , где n2 = b / 2n | (20) |
Если n2>0, то в местах большой напряженности поля - показатель преломления больше. Т.е. в нелинейном материале сам пучок формирует положительную линзу. Это так называемая крупномасштабная самофокусировка. Существует также мелкомасштабная самофокусировка, обусловленная нарастанием возмущений в пучке в поле мощной световой волны.
На рисунках показано применение ВКР.
Рис.7a. КАРС спектроскопия. |
Рис.7b. Многопроходные кюветы. |