Смекни!
smekni.com

Нелинейная оптика (стр. 3 из 5)

(11)

или (считая s функцией частоты)

(11a)

и аналогично

(11b)

(11c)

Эти уравнения мы применим в дальнейшем при рассмотрении ряда конкретных случаев.

Генерация второй гармоники (ГВГ)

Первый эксперимент по генерации второй гармоники света был выполнен Франкеном в 1961 году. Луч рубинового лазера с l = 694,3 нм фокусировался на поверхность пластины из кристаллического кварца. Выходящее излучение анализировалось спектрометром. Было найдено, что в нем содержится компонента с удвоенной частотой (т.е. с l = 347,15 нм). Эффективность преобразования в первых экспериментах была порядка 10-8. Использование более эффективных материалов, увеличение мощности лазера, обеспечение условий фазового синхронизма позволили в последние годы довести коэффициент преобразования почти до единицы.


Рис.1. Схема первых экспериментов по ГВГ.
1 - рубиновый лазер, 2 - фокусирующая линза, 3 - кварцевая пластинка,
4 - коллиматорные линзы, 5 - призма, 6 - фотопластинка (экран).
Цвета показаны условно.

Применим уравнения (11a-11c) для рассмотрения ГВГ. Это частный случай взаимодействия полей трех частот, когда две частоты w1 и w2 одинаковы, а w3 = 2 w1. Следовательно, необходимо анализировать только два уравнения: первое (или второе) и последнее. В целях упрощения будем считать, что потери мощности входного луча (w1) за счет преобразования во вторую гармонику малы, т.е. dE1i/dz » 0. Следовательно, можно рассматривать только последнее уравнение (11c). Если среда прозрачна на частоте w3, то s3=0 и

(12)

где w = w1 = 1/2 w3, Dk = k3(j) - k1(i) - k1(k), а k1(i) - волновое число волны с частотой w1, поляризованной по оси i. Если E3j(0) = 0, т.е вторая гармоника на входе отсутствует, и кристалл имеет длину l, решением (12) будет

(13)

или

(14)

где e¦e3. Чтобы получить выражение для мощности второй гармоники P2w на выходе, воспользуемся соотношением

(15)

где S - площадь поперечного сечения пучка. Приняв e1»e3»e0n2 приходим к коэффициенту преобразования

(16)

Фазовый синхронизм при генерации второй гармоники

Из (16) следует, что предпосылкой для эффективной ГВГ является выполнение условия Dk = 0, или, поскольку w3 = 2 w, а w1 = w2 = w,

Dk = k2w - 2 kw = 0 ® k2w = 2 kw

(17)

Если Dk ¦ 0, то волна удвоенной частоты, генерируемая в некоторой плоскости (z1), дойдя до другой плоскости (z2), окажется не в фазе с волной удвоенной частоты, генерируемой в этой плоскости. Результат интерференции таких волн представлен в (16) множителем (1/2 Dk l)-2 sin2(1/2 Dk l). Два соседних максимума этой интерференции удалены на расстояние, называемое "когерентной длиной":

(18)

Она является в сущности максимальной длиной кристалла, которую можно использовать для ГВГ. Показатель преломления, как правило, растет с увеличением частоты, так что

Dk = k2w - 2 kw = (2 w /c)(n2w - nw)

(19)

Здесь использовано k=wn/c. Когерентная длина выражается формулой

(20)

в которой l - длина волны падающего света.

Пример

Если l = 1 мкм и n2w - nw = 0,01 , то lc = 100 мкм.

Увеличение lc от 100мкм до 2см согласно (16) влечет за собой возрастание мощности второй гармоники в 4·104 раз.

Способ, который широко применяется для обеспечения условий фазового синхронизма, заключается в использовании анизотропных кристаллов, обладающих естественным двулучепреломлением. Используя связь kw = w Цme0 nw, вместо условия (17) получим условие n2w = nw, т.е. коэффициенты преломления на основной частоте и на удвоенной должны совпадать. В материалах с нормальной дисперсией показатель преломления обыкновенной и необыкновенной волн, распространяющихся в данном направлении, растет с частотой. Т.е. удовлетворить условию равенства коэффициентов преломления невозможно, если волны частот w и 2w принадлежат одному типу (обыкновенные или необыкновенные). Однако фазовый синхронизм может осуществляться благодаря использованию волн разных типов.

В качестве примера рассмотрим зависимость показателя преломления необыкновенной волны в одноосном кристалле от угла q между направлением распространения и оптической осью (осью Z) кристалла. Эта зависимость имеет вид

(21)

Если ne2w < now, то существует угол qсинх, при котором ne2w(qсинх) = now. Таким образом, если волна частоты w распространяется под углом qсинх к оси и имеет поляризацию, отвечающую обыкновенному лучу, то волна удвоенной частоты, возбуждаясь в том же направлении, будут обладать поляризацией необыкновенного луча. (См. рис.2).


Рис.2. Поверхности показателей преломления для обыкновенного и необыкновенного лучей в отрицательном одноосном кристалле.

Угол q определяется пересечением сферы, представляющей собой поверхность показателей преломления для обыкновенного луча частоты w (желтая сфера) с эллипсоидом показателей преломления необыкновенного луча частоты 2w (розовый эллипсоид). В случае отрицательного одноосного кристалла (new < now), угол, удовлетворяющий условию ne2w(qсинх) = now, определяется так

(22)

откуда

(23)

Пример

Генерация второй гармоники в кристалле KDP. Исходное излучение - рубиновый лазер (l = 694,3 нм). Значения показателей преломления: new = 1,466, ne2w = 1,487, now = 1,506, no2w = 1,534. Угол синхронизма, вычисленный по формуле (23), равен qсинх = 50,4°.

Вынужденное комбинационное рассеяние (ВКР)

Комбинационное или рамановское рассеяние света давно используется для изучения колебательных спектров молекул и оптической ветви колебаний кристаллических решеток. Ячейка, содержащая исследуемое вещество (жидкость, газ или кристалл), облучается светом с узкой спектральной линией. Спектральный анализ рассеянного излучения обнаруживает присутствие линий, смещенных вниз по частоте на величину, равную колебательным частотам облучаемого образца. Этот тип рассеяния называется стоксовым рассеянием.

В спектре рассеянного излучения присутствуют также частоты, равные сумме частоты падающего излучения и колебательных частот вещества. Это так называемое антистоксово рассеяние, интенсивность которого на несколько порядков меньше интенсивности стоксовой компоненты.

Указанные два типа рассеяния поясняются на рис.3.

(a)
Стоксово рассеяние, при котором поглощается лазерный фотон и вместе со стоксовым фотоном на частоте wc = wл - wu возникает квант колебаний молекулы (u = 1).
(b)
Антистоксово рассеяние, при котором поглощаются лазерный фотон и колебательный квант, а испускается фотон на частоте wac = wл + wu.
(c)
Процесс поглощения фотонов частоты wc = wл - wu, стимулированный наличием лазерного излучения частоты wл.

Рис.3. Переходы при вынужденном комбинационном рассеянии.

Т.к. антистоксово излучение определяется молекулами, находящимися в возбужденном состоянии, то его интенсивность ниже интенсивности стоксова излучения на величину множителя exp (--wu /kT). На рис.3 (c) представлен также обратный процесс, при котором фотон стоксовой частоты поглощается.