(12) |
и подставив во второе, получим
(11a) |
Очевидно, решение для поляризации имеет вид
(13) |
Выводы:
1. Поляризация меняется с той же частотой w, что и внешнее поле.
2. Амплитуда поляризации существенно зависит от соотношения частот w и w0.
a. Если w=w0 (резонанс), амплитуда максимальна;
b. Вдали от резонанса |w-w0| >> gз
В этом случае фаза поляризации близка к нулю (см. (12)). Тогда поляризация
(13a) |
т.е. восприимчивость зависит от частоты.
c. В предельном случае постоянного поля для восприимчивости получаем вновь формулу аналогичную (7а) (w=0 ® (13a)):
До сих пор предполагалось, что на электрон действует поле малой напряженности. Мы брали FУ = - k r (линейное приближение, пригодное для случая малого смещения электрона). Теперь будем считать, что напряженность светового поля и смещение электрона могут быть достаточно большими, и для упругой силы возьмем FУ = - k r - q r3:
(14) | |
(15) |
Будем, как и раньше считать, что поле E(t) меняется по гармоническому закону, рассматривая нерезонансный случай (|w-w0| >> gз). Членами при gз и P' 3 пренебрегаем. Решение опять ищем в виде P'=P'0+P'1 (два порядка малости), подставляем его в (15) и собирая отдельно члены нулевого и первого порядков малости, получаем:
(16) | |
(17) |
Первое уравнение мы уже решали, это решение вдали от резонанса - (13a). Подставляем его в (17):
(18) |
Т.к. напряженность поля меняется по гармоническому закону, то
E3(t) = 1/4 E03 (3 cos wt + cos 3wt) | (19) |
Уравнение (18) - это уравнение гармонического осциллятора, на который действует внешняя сила (правая часть уравнения), состоящая из двух компонент, одна из которых меняется с частотой w, а другая - с частотой 3w. Поэтому решение будем искать в виде P'1=P'1,w cos wt + P'1,3w cos 3wt. Подставляя его в (18) и получаем:
(20) | |
(21) |
Объединяем (20-21) и получаем общее решение:
P'= P'0 + P'1 = c(w,E0) E0 cos wt + c(3w,E0) E0 cos 3wt | (22) |
где
(23) |
Выводы:
Поляризация в сильном световом поле является функцией не только частоты падающего излучения, но и его третьей гармоники. Известно, что заряд, совершающий гармоническое колебание с некоторой частотой, излучает монохроматическую электромагнитную волну той же частоты. Поэтому в рассмотренной задаче появляются две волны: одна с частотой w, другая - с частотой 3w.
Таким образом, в рамках простейшей модели мы показали, каким образом из-за нелинейных свойств среды в сильном световом поле возникают высшие гармоники.
Тензор нелинейной восприимчивости
Рассмотрим нелинейное взаимодействие двух электромагнитных полей. Одно из них, поляризованное вдоль j, описывается выражением:
Ejw1(t) = Re(Ejw1 exp iw1t) = 1/2(Ejw1 exp iw1t + к.с.), | (1) |
а второе, поляризованное в направлении k, - выражением
Ekw2(t) = Re(Ekw2 exp iw2t) |
Если среда нелинейная, наличие этих двух полей может привести к появлению поляризации на частотах nw1+mw2, где n и m - целые числа. Записав i-компоненту поляризации на частоте w3=w1+w2 в виде
Piw3=w1+w2(t) = Re(Piw3 exp iw3t), |
определим тензор нелинейной восприимчивости (раньше мы использовали cijk - тензор линейной восприимчивости) dijkw3=w1+w2 с помощью следующего соотношения для комплексных амплитуд
(2) |
Подобным же образом вводим тензор восприимчивости на разностной частоте dijkw3=w1-w2
(3) |
где согласно (1) Ek-w2=(Ekw2)*
Рассмотрение взаимодействия электромагнитных полей начнем с записи уравнения Максвелла, выделив в явном виде поляризацию P:
(4) |
Примечание: |
Представив поляризацию в виде суммы линейного и нелинейного членов, перепишем первое уравнение.
(5) |
Возьмем ротор от обеих частей второго уравнения (4) и подставим rot H из (5) (см. тж. примечание), учитывая, что div E=0:
(6) |
Дальнейший анализ проведем для одномерного случая (¶/¶x=¶/¶y=0). За направление распространения берем ось Z. Ограничимся рассмотрением взаимодействия колебаний трех частот и соответствующие поля возьмем в виде бегущих плоских волн:
Eiw1(z,t) = 1/2[E1i(z) exp i(w1t-k1z) + к.с.], Ekw2(z,t) = 1/2[E2k(z) exp i(w2t-k2z) + к.с.], Ejw3(z,t) = 1/2[E3j(z) exp i(w3t-k3z) + к.с.], | (7) |
где ijk - декартовы координаты. Заметим, что при Pнел=0 решение уравнения (6) дается выражениями (7) с амплитудами, не зависящими от z. В качестве примера запишем i-компоненту нелинейной поляризации на частоте w1=w3-w2. Согласно (3) и (7) она имеет вид
(7a) |
Вернемся к уравнению (6). В одномерном случае
(8) |
Дифференцируем и полагаем, что изменение комплексных амплитуд полей достаточно медленное, т.е.
(9) |
Аналогичные выражения можно вывести для С2Ejw3(z,t) и С2Ekw2(z,t). Подставляя (9) в (6) и используя соотношение ¶/¶t=iw1 получим волновое уравнение для Eiw1(z,t):
(10) |
Предполагаем, что при взаимодействии конечного числа полей уравнение (6) должно удовлетворяться по отдельности для компонент с различными частотами. Поставив (7а) и заметив, что w12m0e=k12, получим