Если для медного терморезистора требуется определить сопротивление RT2 (при температуре Θ2) по известному сопротивлению RT2 (при температуре Θ1), то следует пользоваться формулой
или более удобным соотношением
где Θ = 1/a — постоянная, имеющая размерность температуры и равная Θ0 = 234,7° С (по физическому смыслу Θ0 — это такое значение температуры, при котором сопротивление меди должно было бы стать равным нулю, если бы ее сопротивление уменьшалось все время по линейному закону, чего нет на самом деле).
В значительной степени сопротивление металлов зависит от их химической чистоты и термообработки. ТКС сплавов обычно меньше, чем у чистых металлов, и для некоторых сплавов может быть даже отрицательным в определенном температурном диапазоне.
Выбор металла для терморезистора определяется в основном химической инертностью металла к измеряемой среде в интересующем интервале температур. С этой точки зрения медный преобразователь можно применять только до температур порядка 200° С в атмосфере, свободной от влажности и коррелирующих газов. При более высоких температурах медь окисляется. Нижний предел температуры для медных термометров сопротивления равен — 50° С хотя при введении индивидуальной градуировки возможно их применение вплоть до — 260° С.
Промышленные платиновые термометры используются в диапазоне температур от —200 до +650° С, однако есть данные, свидетельствующие о возможности применения платиновых термометров для измерения температур от —264 до +1000° С.
Основным преимуществом никеля является его относительно высокое удельное сопротивление, но зависимость его сопротивления от температуры линейна только для температур не выше 100° С. При условии хорошей изоляции от воздействия среды никелевые терморезисторы можно применять до 250—300° С. Для более высоких температур его ТКС неоднозначен. Медные и никелевые терморезисторы выпускают из литого микропровода в стеклянной изоляции. Микропроволочные терморезисторы герметизированы, вы-сокостабильны, малоинерционны и при малых габаритах могут иметь сопротивления до десятков килоом.
Высокий ТКС имеют вольфрам и тантал, но при температуре свыше 400° С они окисляются и применяться не могут. Для низкотемпературных измерений хорошо зарекомендовали себя некоторые фосфористые бронзы. Кроме того, для измерений низких температур находят применение индиевые, германиевые и угольные терморезисторы.
Некоторые характеристики металлов, используемых в терморезисторах, приведены в табл. 3.
Таблица 3:
Материал | ТКС в диапазоне 0-100°С | Удельное сопротивление при 20 °С, Оm∙mm2/m | Температура плавления, °С | Термо-э.д.с. в паре с медью (0-500 °С), мкВ/К |
Платина | 0,0039 | 0,105 | 1773 | 7,5 |
Медь | 0,00427 | 0,017 | 1083 | о |
Никель | 0,0069 | 0,08 | 1455 | 22,5 |
Вольфрам | 0,0048 | 0,055 | 3410 | 0,5 |
Погрешности, возникающие при измерении температуры термометрами сопротивления, вызываются нестабильностью во времени начального сопротивления термометра и его ТКС, изменением сопротивления линии, соединяющей термометр с измерительным прибором, перегревом термометра измерительным током.
Термометры сопротивления относятся к одним из наиболее точных преобразователей температуры. Так, например, платиновые теоморезисторы позволяют измерять температуру с погрешностью порядка 0,001° С.
Полупроводниковые терморезисторы отличаются от металлических меньшими габаритами и большими значениями ТКС.ТКС полупроводниковых терморезисторов (ПТР) отрицателен и уменьшается обратно пропорционально квадрату абсолютной температуры: a = B/Θ2. При 20° С величина ТКС составляет 2—8 проц/К.
Температурная зависимость сопротивления ПТР (рис. 7, кривая 2) достаточно хорошо описывается формулой RT = AeB/Θ, где Θ — абсолютная температура; А — коэффициент, имеющий размерность сопротивления; В — коэффициент, имеющий размерность температуры. На рис. рис. 7 для сравнения приведена температурная зависимость для медного терморезистора (кривая 1). Для каждого конкретного ПТР коэффициенты А и В, как правило, постоянны, за исключением некоторых типов 1 ПТР (например, СТ 3-14), для последних В может принимать два разных значения в зависимости от диапазона измеряемых температур.
Если для применяемого ПТР не известны коэффициенты А и В, но известны сопротивления R1 и R2 при Θ1 и Θ2, то величину сопротивления и коэффициент В для любой другой температуры можно определить из соотношений
'Конструктивно терморезисторы могут быть изготовлены самой разнообразной формы. На рис. 8 показано устройство нескольких типов терморезисторов. Терморезисторы типа ММТ-1 и КМТ-1 представляют собой полупроводниковый стержень, покрытый эмалевой краской с контактными колпачками и выводами. Этот тип терморезисторов может быть использован лишь в сухих помещениях.,
Терморезисторы типов ММТ-4 и КМТ-4 заключены в металлические капсулы и герметизированы, благодаря чему они могут быть использованы в условиях любой влажности и даже в жидкостях, ие являющихся агрессивными относительно корпуса терморезистора.
Особый интерес представляют миниатюрные полупроводниковые терморезисторы, позволяющие измерять температуру малых объектов с минимальными искажениями режима работы, а также температуру, изменяющуюся во времени. Терморезисторы СТ1-19 и СТЗ-19 имеют каплевидную форму. Чувствительный элемент в них герметизирован стеклом и снабжен выводами из проволоки, имеющей низкую теплопроводность. В терморезисторе СТЗ-25 чувствительный элемент также помещен в стеклянную оболочку, диаметр которой доведен до 0,5—0,3 мм. Терморезистор с помощью выводов прикреплен к траверсам.
Рис. 8
В табл. 4 представлены основные характеристики некоторых ПТР. В графе «номинальные сопротивления» приведены крайние значения рядов номинальных сопротивлений, нормируемых для большинства ПТР при 20° С. Исключение составляют ПТР типов
Таблица 4
Тип ПТР | Номинальное сопротивление, кОм | Постоянная В, K∙1012 | Диапазон рабочих температур, oС | Коэффициент рассеяния, мВт/К | Постоянная времени (нe более), с |
КМТ-1 | .22—1000 | 36—72 | От —60 до +180 | 5 | 85 |
ММТ-1 | 1—220 | 20,6—43 | От —60 до +125 | 5 | 85 |
СТЗ-1 | 0,68—2,2 | 28,7—34 | От —60 до +125 | 5 | 85 |
КМТ-4 | 22—1000 | 36—72 | От —60 до +125 | 6 | 115 |
ММТ-4 | 1—220 | 20,6—43 | От —60 до +125 | 6 | 115 |
ММТ-6 | 10—100 | ³20,6 | От —60 до +125 | 1,7 | 35 |
СТЗ-6 | 6,8—8,2 | 20,5-24 | От —90 до +125 | 1,6 | 35 |
КМТ-10 | 100—3300 | ³36 | 0—125 | — | — |
КМТ-1 Оа | 100—3300 | ³36 | 0-125 | 1 | 75 |
КМТ-11 | 100—3300 | ³36 | 0—125 | 0,8 | 10 |
СТ4-2 | 2,1—3,0 | 34,7—36,3 36,3—41,2 | От —60 до +125 | 36 | — |
СТ4-15 | 1,5-1,8 | 23,5—26,5 29,3—32,6 | От -60 до +180 | 36 | — |
КМТ-17 (а, б) | 0,33—22 | 36—60 | От —60 до +155 | 2 | 30 |
КМТ-17в | 0,33—22 | 36—60 | От —60 до +100 | 2 | 30 |
СТ1-17 | 0,33—22 | 36—60 | От —60 до +100 | 2 | 30 |
СТЗ-17 | 0,033—0,33 | 25,8—38,6 | От —60 до +100 | 3 | 30 |
СТ4-17 | 1,5—2,2 | 32,6—36 | От —80 до +100 | 2 | 30 |
КМТ-14 | 0,51—7500 | 41—70 | От —10 до +300 | 0,8 | 60 |
СТЗ-14 | 1,5-2,2 | 26—33 27,5—36 | От —60 до +125 | 1,1 | 4 |
СТ1-18 | 1,5—2200 | 40,5—90 | От —60 до +300 | 0,2 | 1 |
СТЗ-18 | 0,68—3.3 | 22,5—32,5 | От —90 до +125 | 0,18 | 1 |
СТ1-19 | 3,3—2200 | 42,3—72 | От -60 до +300 | 0,6 | 3 |
СТЗ-19 | 2,2—15 | 29, 38, 5 | От —90 до +125 | 0,5 | 3 |
СТЗ-25 | 3,3—4,5 | 26—32 | От —100 до+125 | 0,08 | 0,4 |
КМТ-14, СТ1-18, СТ1-19, номинальные сопротивления которых нормируются для температуры 150° С. В графе «постоянная В» для некоторых типов ПТР приводятся два диапазона возможных значений В, первая строчка при этом относится к низким температурам, а вторая — к высоким. Перелом характеристики для ПТР типа СТЗ-6 происходит при — 28° С, для СТ4-2 и СТ4-15 — при 0° С и Для СТЗ-14— при 5° С.