Содержание:
1. Основные характеристики магнитных материалов | 2 |
1.1. Петля гистерезиса | 2 |
1.2. Кривая намагничивания | 3 |
1.3. Магнитная проницаемость | 3 |
1.4. Потери энергии при перемагничивании | 5 |
2. Классификация магнитных материалов | 6 |
3. Магнитотвердые материалы | 7 |
3.1. Общие сведения | 7 |
3.2. Литые материалы на основе сплавов | 8 |
3.3. Порошковые магнитотвердые материалы (постоянные магниты) | 10 |
3.4. Прочие магнитотвердые материалы | 13 |
3.5. Список литературы | 16 |
Магнитные материалы обладают способностью при внесении их в магнитное поле намагничиваться, а некоторые из них сохраняют свою намагниченность и после прекращения воздействия магнитного поля.
1. Основные характеристики магнитных материалов
Магнитные свойства материалов характеризуется петлей гистерезиса, кривой намагничивания, магнитной проницаемостью, потерями энергии при перемагничивании.
1.1. Петля гистерезиса. При циклическом изменении напр
Площадь гистерезисных петель в промежуточных и предельном состояниях характеризует рассеивание электрической энергии в процессе перемагничивания материала, т.е. потери на гистерезис. Площадь гистерезисной петли зависит от свойств материала, его геометрических размеров и частоты перемагничивания.
По предельной петле гистерезиса определяют такие характеристики магнитных материалов, как индукцию
насыщения Bs, остаточную индукцию Вс, коэрцитивную силу Нс.
1.2. Кривая намагничивания. Это важнейшая характеристика магнитных материалов, она показывает зависимость намагниченности или магнитной индукции материала от напряженности внешнего поля Н. Магнитная индукция материала Bi измеряется в теслах (Тл) и связана с намагниченностью М формулой
1.3. Магнитная проницаемость. Для характеристики поведения магнитных материалов в поле с напряженностью Н пользуются понятиями абсолютной магнитной проницаемости mа и относительной магнитной проницаемости m0 :
Подставляя эти значения в соотношения конкретные значения В и Н, получают различные виды магнитной проницаемости которые применяют в технике. Наиболее часто используют понятия нормальной m, начальной mн, максимальной mmax, дифференциальной mдиф и импульсной mи магнитной проницаемости.
Относительную магнитную проницаемость материала m получают по основной кривой намагничивания. Для простоты слово «относительная» не упоминается.
Магнитную проницаемость при Н=0 называют начальной магнитной проницаемостью mн. Ее значение определяется при очень слабых полях (примерно 0,1 А/м).
Максимум на кривой проницаемости, соответствующий II участку кривой намагничивания (см. рис. 2), характеризуется значением максимальной магнитной проницаемости mmax. Начальная и максимальная магнитные проницаемости представляют собой частные случаи нормальной магнитной проницаемости. Их значения наряду с Bs, Вс и Нс являются важнейшими параметрами магнитного материала.
В сильных полях в области насыщения магнитная проницаемость стремится к единице.
1.4. Потери энергии при перемагничивании. Это необратимые потери электрической энергии, которая выделяется в материале в виде тепла.
Потери на перемагничивание магнитного материала складываются из потерь на гистерезис и динамических потерь.
Потери на гистерезис создаются в процессе смещения стенок доменов на начальной стадии намагничивания. Вследствие неоднородности структуры магнитного материала на перемещение стенок доменов затрачивается магнитная энергия.
Потери на гистерезис
Динамические потери Рвт вызываются частично вихревыми токами, которые возникают при изменении направления и напряженности магнитного поля; они также рассеивают энергию:
Потери на вихревые токи из-за квадратичной зависимости от частоты поля превосходят потери на гистерезис на высоких частотах.
К динамическим потерям относятся также потери на последействие Рп, которые связаны с остаточным изменением магнитного состояния после изменения напряженности магнитного поля. Они зависят от состава и термической обработки материала и появляются на высоких частотах. Потери на последействие (магнитную вязкость) необходимо учитывать при использовании ферромагнетиков в импульсном режиме.
Общие потери в магнитном материале
2 . Классификация магнитных материалов
Электорадиоматериалы, применяемые в технике с учетом их магнитных свойств, разделяют на магнитомягкие и магнитотвердые.
Форма петли гистерезиса обеих групп материалов (рис. 3), индукция насыщения Bs и остаточная индукция Вс примерно одинаковы, однако разница в коэрцитивной силе Нс достигает очень большого значения. Так, для магнитотвердых материалов наибольшая коэрцитивная сила Нс=800 кА/м, а для магнитомягких материалов наименьшая коэрцитивная сила Нс=0,4 А/м, т.е. различие составляет 2*106 раз.