При столкновении пули и маятника последний отклоняется, совершая поступательное движение. Перемещение маятника l определяется по шкале Ш. Цилиндрический маятник с одной стороны полый и заполнен пластилином. При столкновении пули с пластилином совершается абсолютно неупругий удар. Если же цилиндрический маятник подвесить стальным основанием к пуле, то удар при столкновении маятника у пули будет частично упругим.
Рассмотрим абсолютно неупругое столкновение пули и маятника. После такого столкновения маятник вместе с пулей двинутся со скоростью U . Отклоняясь, маятник и пуля поднимутся на высоту h, (рис. 2). Кинетическая энергия маятника и пули после удара перейдет в их потенциальную энергию:
, (8)где m - масса пули, г, m = 10,4; M - масса маятника, г, М = 36,4. Высоту подъема h можно определить из прямоугольного треугольника abc:
L2=(L-h)2+l2 => h=L- , (9)
где L - длинa нити.
Из соотношения (9), зная h, можно найти скорость пули и маятника после абсолютно неупругого удара
, (10)Скорость пули V в момент удара определяется из закона сохранения импульса
тV = (m+M)U, (11)
Подставляя значение U в (10), найдем
, (12)При неупругом ударе кинетическая энергия пули переходит, частично, а кинетическую энергию пули и маятника и частично рассеивается:
(13)где Еg - энергия диссипации. Из соотношения (13) следует:
(14)Рассмотрим частично упругий удар. После такого столкновения маятник движется со скоростью U2, а пуля - в противоположном направлении со скоростью U1. Из закона сохранения импульса mV = MU2- mU1можно определить скорость пули после удара
(15)Скорость маятника найдем из закона сохранения энергия после удара, учитывая соотношение (9),
(16)Скорость пули до удара V не изменится и может быть найдена из соотношения (12).
Коэффициент восстановления относительной скорости (7) определяется из соотношения .
(17)Следует отметить, что для определения скорости пули в момент удара нельзя воспользоваться равенством кинетической и потенциальной энергии пули, так как часть кинетической энергии рассеивается в результате трения пули о стенки трубки.
Порядок выполнения работы
1. Установить Маятник горизонтально, повернув его пластилином к трубке. Заметить на шкале начальное положение маятника.
2. Измерить длину нити L .
3. Опустить пулю острым концом в верхнее отверстие трубки и определить по шкале перемещение маятника l после абсолютно неупругого удара. Данные занести в таблицу. Опыт проделать пять раз и найти среднее значение отклонения.
4. По формулам (10), (12), (14) вычислить скорость пули в момент удара и энергию диссипации. Определить погрешности.
5. Развернуть маятник на 180° и установить его в горизонтальном положении. Заметить на шкале начальное положение маятника.
6. Опустить пулю тупым концом в верхнее отверстие трубки и определить по шкале перемещение маятника l после частично упругого удара. Данные занести в таблицу. Опыт проделать пять раз и найти среднее значение отклонения.
7. По формулам (15)-(17) определить скорости пули и маятника после частично упругого удара, а также коэффициент восстановления относительной скорости K. Найти погрешности К.
Контрольные вопросы и задания
1. Какое взаимодействие называется ударом?
2. Какой удар называется абсолютно упругим, абсолютно неупругим, частично упругим? Какие законы выполняются при этих ударах?
3. Что называется коэффициентом восстановления?
4. Получите из законов сохранения энергии и импульса скорость пули в момент удара и энергию диссипации при абсолютно неупругом ударе.
5. Получите соотношения для определения скорости пули и маятника после частично упругого удара.
3. ИСCЛЕДОВАНИЕ ЗАКОНОМЕРНОСТЕЙ ЧАСТИЧНО УПРУГОГО УДАРА НА ПРИМЕРЕ ВЗАИМОДЕЙСТВИЯ ДВУХ ШАРОВ
Цель работы
Определить коэффициент восстановления относительной скорости и энергию диссипации при частично упругом соударении двух шаров.
Приборы и принадлежности
Лабораторная установка (рис. 3), линейка.
Теоретическое введение
В теоретическом введении к работе «Экспериментальное изучение неупругого и упругого ударов» даны основные сведения о всех разновидностях ударов и о коэффициенте Восстановления относительной скорости. При частично упругом соударении двух шаров, когда их скорости в момент удара равны и после удара равны друг другу по величине и противоположны по направлению, коэффициент восстановления можно определить по формуле
,где U - скорость шара после удара, U1 = -U2 - U - скорость шара в момент удара: V1 = -V2 = V.
Учитывая это можно записать
(18)Коэффициент восстановления зависит только от материала соударяющихся шаров. Величину K проще всего определить при центральном ударе шаров равной массы. Пусть два одинаковых шара висят на нитях равной длины l (рис. 3). Если оба шара отклонить на одинаковые углы α0 и отпустить, то скорости их в момент соударения будут одинаковы. Нетрудно рассчитать величину этой скорости V, учитывая, что потенциальная энергия поднятого на высоту h шара перейдет в его кинетическую энергию
(19)В данном опыте проще измерить не высоту подъема h, а угол α0, на который был отклонен шар. Из рис. 3 следует, что
(20)Если угол отклонения шаров достаточно мал, то можно принять
Поэтому
.Учитывая это, найдем V из соотношения (19):
(21)По аналогии можно определить и скорость шаров после удара, измерив величину угла α, на который отклонится любой из шаров после удара, т.е.
(22)Подставляя значение U (22) и V (21), в соотношение (16), найдем коэффициент восстановления скорости
(23)где α1 - угол отклонения после первого соударения. Если α1 - незначительно отличается от начального угла α0, целесообразно измерить величину угла после нескольких соударений (2-5). В этом случае формула для коэффициента восстановления изменится.
После первого соударения К = α1 / α0;
После второго соударения К = α2 / α1;
После третьего соударения К = α3 / α2;
После любого n соударения К = αn / αn-1;
Перемножив все эти равенства, получим
Откуда
(24)Частично упругий удар сопровождается, как известно, диссипацией (рассеянием) энергии: часть механической энергии переходит в другие вида энергии - энергию остаточной деформации и внутреннюю (тепловую) энергию. Энергию диссипации Еg одного шара, относящуюся к одному соударению, можно выразить через коэффициент восстановления К. Для этого запишем закон сохранения энергии для, частично упругого удара двух одинаковых шаров:
Учитывая, что
получим
Откуда
Учитывая (18), (21), имеем
(25)