Смекни!
smekni.com

Лекции по механике (стр. 3 из 9)

где v x0 - проекция скорости на ось Х в начальный момент времени. Ранее указывалось, что по известной зависимости v (t) можно найти закон движения. Следовательно, по известному ускорению, зная начальные значения положения точки и ее скорости, можно найти ее закон движения. С точки зрения практики вектор ус-

D vA B vBDv A Dvn E D vt C Рис.4. Нормальная и тангенциальная составляющие изменения скорости.
корения удобнее представлять в виде двух составляющих, одна из которых направлена по касательной к траектории, а другая по нормали, проведенной в точку касания. Пусть за время Dt точка переместилась из А в В, и за это время ее скорость изменилась от vA до vB . Для того, чтобы найти изменение Dv пе-

ренесем вектор vB в точку начала вектора vA. Тогда разность двух векторов vB - vA

может быть представлена в виде вектора Dv = DC. В свою очередь, вектор Dv мо-
жно представить тоже как сумму двух составляющих Dv = Dvn + Dvt , где вектор Dvt находится как разность АС-АЕ ( АЕ=АD, АС= vB ), т.е. как разность модулей векторов vB и vA. Вектор Dvn характеризует изменение направления вектора vA , т.к. vA = АЕ = АD. Треугольник DAE равнобедренный, поэтому при уменьшении интервала времени Dt до нуля (Dt 0) угол DAE также стремится к 0, а ÐАDЕ 900,
и Dvn оказывается перпендикулярным направлению скорости. В то же время ясно,
что направление вектора Dvt при Dt 0 приближается к направлению касательной в точке А. Поэтому

. (1- 14 )

Первое из слагаемых в (1- 14 ) называют нормальной составляющей ускорения или просто нормальным ускорением, а второе - тангенциальным. Таким образом

, (1- 15 )

. (1- 16 )

Модуль полного ускорения определяется следующим выражением:

. ( 1-17 )

§ 1 - 2. Кинематика вращательного движения.

vA vAa Dv Dl vB r aРис.5. К выводу центростре- мительного ускорения
Частным примером нормального ускорения служит
центростремительное ускорение, возникающее при
равномерном движении точки по окружности. Если
за малый промежуток времени Dt точка успевает по-вернуться на угол a, то как видно из рис.5, между
перемещением Dl , радиусом r , приращением Dv и
самой скоростью v можно записать следующее соотношение:
. ( 1-18 )

Из этого соотношения приращение скорости Dv равно:

( 1-19 )

Деля выражение ( 1-19 ) для приращения скорости на промежуток времени Dt, имеем:

. (1- 20 )

Для случая вращательного движения полезными оказываются такие дополнительные кинематические характеристики как угловая скорость и угловое ускорение. Величина угловой скорости w определяется как отношение угла Dj, который описывает радиус-вектор точки за время Dt, т.е.

. ( 1-21 )
w v r Dj Ds Рис.6.К определению направ-
ления угловой скорости.
При этом угловой скорости приписывается определенное направление, которое определяется следующим образом: направление отсчета угла определяется направлением вращения, а направление w определяется правилом правого буравчика - оно совпадает с движением оси буравчика, когда он вращается в направлении вращения материальной точки ( см. рис.6 ). Вектор углового ускорения b определяется через изменение уг-

ловой скорости вращения за время Dt. При этом направление b совпадает с направлением w, если за время Dt происходит увеличение скорости w и направление b противоположно вектору w, если за время Dt угловая скорость уменьшается. Таким образом

. ( 1- 22 )

При вращательном движении между линейной скоростью точки, направлен-

ной по касательной к окружности вращения существует определенная взаимосвязь. Действительно

[w r ] , ( 1-23 )

где квадратные скобки обозначают векторное произведение двух векторов - w и r.