Смекни!
smekni.com

Лазеры (стр. 2 из 2)

Широко используемыми на практике способами создания инверсной населенности являются: 1) возбуждение за счет инжекции неосновных носителей через p-n - переход; 2) возбуждение электронным лучом;

3) возбуждение в сильном электрическом поле.

Рубиновые “спички”.

Первым в оптическом диапазоне волн заработал лазер на розовом рубине, испускающий ярко – красные световые лучи с длиной волны около 0,7мк. По химическому составу он представлял собой корунд с примесью оксида хрома Сг2О3 (0,05%). При достижении инверсной населенности использовались возбужденные состояния ионов Сг3+. Концентрация ионов хрома в кристалле розового ру­бина первого лазера составляла 1,62-1019 см-3. Для ионов хрома характерна так называемая трехуровневая схема расположения энергетических состояний. Инверсная населенность в рубине достигалась оптическим методом при по­мощи мощной импульсной ксеноновой лампы. Под воздействием ультрафиолетового излучения лампы ионы хрома возбуждаются с вероятностью р

В
и переходят на систему уровней 3. Отсюда они могут перейти или снова на уровень 1 с вероятностью А
+ р
В
или на уровень 2 в результате без излучательного перехода с вероятностью S
- Энергия, выделяющаяся при таком переходе, идет на нагревание кристалла. Состояние 2 для ионов хрома является метастабильным, оно обусловливает фосфорес­ценцию рубина в красной области спектра. При определенной концентрации ионов хрома и мощности излучения, возбуждаю­щего ионы хрома (она называется мощностью «накачки»), уда­ется создать такое распределение ионов по уровням, при кото­ром N2 > N1, т.е. получить инверсное состояние. Между уровнями 1 и 2 возможны переходы, подобные переходам в двухуровневой системе.

В качестве системы, обеспечивающей обратную связь, приме­нялся по предложению А.М.Прохорова оптический резонатор Фабри-Перо. Зеркала резонатора 3

и 3
наносили непосредст­венно на торцы тщательно отполированного (с точностью до λ/8) рубинового стержня. Кристалл рубина помещали вдоль оси спи­ральной лампы накачки Л. В более поздних конструкциях применялись иные схе­мы оптического возбуждения кристалла, позволяющие улучшить условия освещения рубина. Например, использовались зеркаль­ные отражатели, имеющие форму эллиптических цилиндров. В одном из фокусов такого отражателя помещался кристалл рубина Р в другом - цилиндрическая лампа накачки Л . Рубиновый лазер работает в импульсном режиме, генерируя вол­ны длиной 0,68 мкм.

Применение лазеров.

Прежде всего, следует отметить, что исследования взаимодействия лазерного излучения с веществом представляют исключительно большой научный интерес. Лазеры находят широкое применение в современных физических, химических и биологических исследованиях, имеющих фундаментальный характер. Ярким примером могут служить исследования в области нелинейной оптики. Как уже отмечалось, лазерное излучение, обладающее достаточно высокой мощностью, может обратимо изменять физические характеристики вещества, что приводит к различным нелинейно-оптическим явлениям.

Лазер дает возможность осуществлять сильную концентрацию световой мощности в пределах весьма узких частотных интервалов: при этом возможна также плавная перестройка частоты. Поэтому лазеры широко применяются для получения и исследования оптических спектров веществ. Лазерная спектроскопия отличается исключительно высокой степенью точности (высоким разрешением). Лазеры позволяют также осуществлять избирательное возбуждение тех или иных состояний атомов и молекул, избирательный разрыв определенных химических связей. В результате оказывается возможным инициирование конкретных химических реакций, управление развитием этих реакций, исследование их кинетики. Пикосекундные лазерные импульсы дали начало исследованиям целого ряда быстропротекающих процессов в веществе и, в частности, в биологических структурах. Отметим, например, фундаментальные исследования процессов фотосинтеза. Эти процессы весьма сложны и, к тому же, протекают крайне быстро — в пикосекундной временной шкале. Использование сверхкоротких световых импульсов дает уникальную возможность проследить за развитием подобных процессов и даже моделировать отдельные их звенья.

Роль лазеров в фундаментальных научных исследованиях исключительно велика.

Практическое и промышленное применение лазера.

При обсуждении практических применений лазеров обычно выделяют два направления. Первое направление связывают с применениями, в которых лазерное излучение (как правило, достаточно высокой мощности) используется для целенаправленного воздействия на вещество. Сюда относят лазерную обработку материалов (например, сварку, термообработку, резку, пробивание отверстий), лазерное разделение изотопов, применения лазеров в медицине и т. д. Второе направление связывают с так называемыми информативными применениями лазеров — для передачи и обработки информации, для осуществления контроля и измерений.

Наряду с научными и техническими применениями лазеры используются в информационных технологиях для решения специальных задач, причем эти применения широко распространены или находятся в стадии исследований. Наиболее распространенными примерами таких применений являются оптическая цифровая память, оптическая передача информации, лазерные печатающие устройства, кроме того они применяются в вычислительной технике в качестве различных устройств.

Лазеры в выЧислительной технике.

Принципиально достигнутые малые времена переключения делают возможным применение лазеров и комбинаций с лазерами, включая интеграцию в микроэлектронных переключательных схемах

( оптоэлектроника ):

- в качестве логических элементов (да - нет, или);

- для ввода и считывания из запоминающих устройств в вычислительных машинах.

В этих целях рассматриваются исключительно инжекционные лазеры.

Преимущества таких элементов: малые времена переключения и считывания, очень маленькие размеры элементов, интеграция оптических и электрических систем.

Достижимыми оказываются времена переключения примерно 10-10 с (соответственно этому быстрые времена вычисления); емкости запоминающего устройства 107 бит/см2, и скорости считывания 109 бит/с.

Лазерный принтер.

Для печати в вычислительной технике и в других случаях часто применяется лазерное излучение. Преимущество их в более высокой скорости печати по сравнению с обычными способами печатания.

Принцип действия их такой: поступающий от считываемого оригинала свет преобразуется в ФЭУ в электрические сигналы, которые соответствующим образом обрабатываются в электронном устройстве вместе с управляющими сигналами (для определения высоты шрифта, состава краски и т.д.) и служат для модуляции лазерного излучения. С помощью записывающей головки экспонируется расположенная на валике пленка. При этом лазерное излучение разделяется на ряд равных по интенсивности частичных лучей (шесть или больше), которые посредством модуляции при данных условиях подключаются или отключаются.

Применяемые лазеры: ионный аргоновый лазер (мощность не более 10 мВт), инжекционный лазер.

ОптиЧескаЯ цифроваЯ памЯть.

Для становящейся все более тесной связи между обработкой данных, текста и изображения необходимо применять новые методы записи информации, к которым предъявляются следующие требования:

- - более высокая емкость запоминающего устройства;

- - более высокая эффективность хранения архивных материалов,

- - лучшее соотношение между ценой и производительностью.

Это может быть достигнуто с помощью записи и считывания цифровой информации.

Список литературы:

1. Справочник по лазерной технике. М: Энергоатомиздат, 1991.

2. Дьяков В. Ф. Тарасов Л. В. Оптическое когерентное излучение. М.: Советское радио, 1974.

3. Оокоси Е. Оптоэлектроника и оптическая связь. М.: Мир, 1988.

4. Федоров Б. Ф. Лазеры. Основы устройства и применения. М.: ДОСААФ СССР, 1988.

5. К. И. Крылов, В. Т. Прокопенко, В. А. Тарлыков

“Основы лазерной техники “. Машиностроение 1990 год.

6. П. Г. Елисеев “Введение в физику инжекционных лазеров”.

7. Е. Остапченко “Чудесные лучи”. Московский рабочий 1969 г.

План.

· Введение.

· Газовый лазер.

· Полупроводниковые лазеры.

· Создание инверсной населенности в полупроводниках

· Рубиновые “спички”.

· Применение лазеров.

· Практическое и промышленное применение лазера.

· Лазеры в вычислительной технике.

· Лазерный принтер.

· Оптическая цифровая память.

· Список литературы.