Смекни!
smekni.com

Лазеры (стр. 3 из 4)

Следующей важной характеристикой лазера является диапазон длин волн, в котором сосредоточено из­лучение, т.е. монохроматичность. У газовых лазеров монохроматичность очень высокая, она составляет 10-10, т.е. значительно выше, чем у газоразрядных ламп, кото­рые раньше использовались как стандарты частоты. Твердотельные лазеры и особенно полупроводниковые имеют в своем излучении значительный диапазон частот, т. е. не отличаются высокой монохроматичностью.

Очень важной характеристикой лазеров является коэффициент полезного действия. У твердо­тельных он составляет от 1 до 3,5%, у газовых 1...15%, у полупроводниковых 40...60%. Вместе с тем принима­ются всяческие меры для повышения кпд лазеров, ибо низкий кпд приводит к необходимости охлаждения ла­зеров до температуры 4...77 К, а это сразу усложняет конструкцию аппаратуры.

ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР

Функцио­нальная схема такого лазера приведена на рис. 6. Он состоит из пяти блоков: излучающей головки, блока кон­денсаторов, выпрямительного блока, блока поджига, пульта управления. Излучающая головка преобразует электрическую энергию сначала в световую, а затем и в монохроматическое лазерное излучение. Блок кон­денсаторов обеспечивает накопление энергии, а выпря­мительный блок служит для преобразования переменного тока в постоянный, которым и заряжаются конденса­торы. Блок поджига вырабатывает очень высокое напря­жение, которым осуществляется первоначальный пробой газа в лампах-вспышках. Поскольку первый лазер был сделан при использовании в качестве активного вещест­ва рубинового стержня, то рассмотрим его устрой­ство. Излучающая головка рубинового лазера состояла из держателя рубина, осевой втулки, двух ламп накачки и цилиндрического рефлектора. Держатели рубина смен­ные и предназначены под рубиновые стержни различных размеров и диаметров.

Используемый в приборе рубин представлял собой окись алюминия, в которой часть атомов алюминия заме­щена атомами хрома. Количеством хрома определяется цвет рубина, так, бледно-розовый рубин содержит 0,05% хрома, красный – 0,5%. Производят такой искусственный рубин следующим образом. В печах при высокой темпе­ратуре выращивают заготовки, называемые булями. Булям придают форму стержня. Торцевые поверхности стержня обрабатывают с высокой точностью и затем полируют. При обработке торцевых поверхностей их де­лают параллельными с точностью около 9...19 угловых секунд и покрывают серебряным или диэлектрическим слоем с высоким коэффициентом отражения. Чистота поверхности соответствует 12-му классу. Этот стержень помещают между двумя лампами-вспышками, которые, в свою очередь, находятся в цилиндрическом рефлекторе. Таким образом осуществляется распределение светового потока от ламп-вспышек на рубиновом стержне. Внут­ренняя поверхность рефлектора покрыта окисью магния, имеющей коэффициент отражения 0,9 – это обеспечивает увеличение кпд излучающей головки.

Блок

поджига

Излучающая Пульт

головка управления

Блок Выпрямительный

конденсаторов блок

Рис. 6. Функциональная схема оптического генератора.

ГАЗОВЫЙ ЛАЗЕР

Для таких лазеров в качестве активного вещества ис­пользуют либо смесь газов, либо вещество, находящееся в парообразном состоянии. Газовая среда облегчает полу­чение непрерывного стимулированного излучения, по­скольку для перевода вещества в возбужденное состояние требуется меньшая энергия. Впервые в качестве активного вещества применялась смесь гелия и неона. Атом гелия в процессе газового разряда возбуждается электронами тока и переходит с основного уровня 1 на уровень 2. При столкновении атомов гелия с атомами неона последние также возбуждаются и совершают пере­ход на один из четырех верхних подуровней (рис. 7). В связи с тем, что перераспределение энергии при столк­новении двух частиц происходит с минимальным изме­нением общей внутренней энергии, то атомы неона пере­ходят в основном именно па уровень 2, а не на уровень 3 или 4. Вследствие этого создается перенаселенность верхнего уровня 2. При переходе атомов неона с уровня 2 на один из подуровней 3 и с уровня 3 на уровень 4 про­исходит излучение. Поскольку уровень 2 состоит из че­тырех, а уровень 3 – из десяти подуровней, то теоретиче­ски имеются более тридцати возможных переходов. Однако только пять переходов дают стимулированное излучение, которое сосредоточено на длинах волн: 1,118; 1,153; 1,160; 1,199; 1,207 мкм.

E, э-В


He+ Ne+

25

20 2

19 3

4

He Ne

0 1 1

Рис. 7. Схема энергетических уровней гелий-неоновой смеси.

ЖИДКОСТНЫЙ ЛАЗЕР.

В этих лазерах рабочей средой служат жидкие диэле­ктрики с примесными рабочими атомами. Оказалось, что, растворяя редкоземельные элементы в некоторых жид­костях. можно получить структуру энергетических уровней, очень сходную со структурой уровней примесных атомов в твердых диэлектриках. Поэтому принцип работы жидкостных лазеров тот же, что и твердотельных. Преимущества жидкостных лазеров очевидны: во-первых. не нужно ни варить стекло высокого качества, ни растить були для кристаллов. Во-вторых, жидкостью можно за­полнять любой объем, а это облегчает охлаждение ак­тивного вещества путем циркуляции самой жидкости в приборе.

Разработан метод получения жидких активных ве­ществ с примесями гадолиния, неодима и самария. При экспериментах по получению стимулированного излуче­ния жидкое вещество помещали в резонатор со сфери­ческими зеркалами, подобный тем, которые использу­ют в газовых лазерах. Если лазер работал в импульсном режиме, то в специальном охлаждении жидкого вещества не было необходимости. Если же прибор работал в не­прерывном режиме, то активное вещество заставляли циркулировать по охлаждающей и рабочей системам.

Был создан и исследован жидкостный лазер с актив­ным веществом, которое излучало в диапазоне 0,5...0,58 мкм (зеленая часть спектра). Это излучение хорошо проникает в воду на большие глубины, поэтому такие генераторы представляют интерес для создания подвод­ных локаторов.

ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР.

В создании полупроводникового лазера приоритет принадлежит советским ученым.

Принцип работы полупроводникового лазера может быть объяснен следующим образом. Согласно квантовой теории электроны в полупроводнике могут занимать две широкие энергетические полосы (рис. 8). Нижняя пред­ставляет собой валентную зону, а верхняя – зону прово­димости. В нормальном чистом полупроводнике при низкой температуре все электроны связаны и занимают энергетический уровень, расположенный в пределах валентной зоны. Если на полупроводник подействовать электрическим током или световыми импульсами, то часть электронов перейдет в зону проводимости. В ре­зультате перехода в валентной зоне окажутся свободные места, которые в физике называют «дырками». Эти дыр­ки играют роль положительного заряда. Произойдёт перераспределение электронов между уровнями валентной зоны и зоны проводимости, и можно говорить, в определенном смысле, о перенаселенности верхней энергетической зоны.

E

Зоны

Проводимости Е-заполнение

Электроны

Е-запрещение

Дырки

Е-незаполнение

Валентная зона

Рис.8. Схема энергетических уровней полупроводникового лазера.

ХИМИЧЕСКИЙ ЛАЗЕР.

Химическим лазерам приписывают практическое ис­пользование в самом ближайшем будущем. Они работают без электрического питания. Для этого потоки химических реагентов должны перемещаться и реагировать. Инверсия населенностей уровней энергии возникает при возбуждении энергией, выделяющейся в химической ре­акции. Для химического лазера имеется принципиальная возможность работы без внешнего источника электриче­ской энергии. Вся необходимая энергия может быть по­лучена за счет химической реакции. В одном из наи­более перспективных химических лазеров основные про­цессы могут быть представлены следующей серией ре­акции

F + H2 ® HF* + Н;

H + F2 ® HF* + F;

HF* ® HF + hn.

УЛЬТРАФИОЛЕТОВЫЙ ЛАЗЕР.

На предыдущих страницах мной были рассмотрены лазеры, излучающие в видимом и инфракрасном диапа­зонах электромагнитного спектра. Важное значение имеют ультрафиолетовый и рентгеновский участки диапа­зона спектра частот. Однако первый освоен крайне слабо. Создана часть приборов на аргоне, криптоне и азоте. Они излучают в диапазоне волн 0,29...0,33 мкм и имеют очень незначительную мощность. Лишь работы последнего вре­мени показали, что могут быть созданы и лазеры вы­сокой мощности. Для этого пригодны так называе­мые эксимерные лазеры на аргоне, криптоне и ксеноне.

ЛАЗЕР НА СВОБОДНЫХ ЭЛЕКТРОНАХ.

Принцип действия такого лазера основан на преобразовании энергии спектрального пучка релятиви­стских электронов в магнитном поле в излучение в опти­ческом диапазоне волн. Из рис. 9 видно, что ускори­телем электронов является устройство, выполненное в виде тороида, вокруг которого располагаются магнитные катушки. Магнитное поле, создаваемое этими катушками, управляется по определенному закону, обеспечивающему ускорение электронов от одного оборота к другому. Это позволяет получить очень высокие скорости электронов. Выбрасываемые из тороида электроны попадают в уст­ройство, называемое линейным ускорителем. Оно образовано магнитами с чередующимися полюсами. Это устройство напоминает резонатор. В нем образуется оп­тическое излучение, которое и выводится наружу. По­скольку процесс преобразования энергии электронов в оптическое излучение осуществляется непосредственно, то такой лазер обладает высоким кпд и может работать в режиме повторяющихся импульсов. Другим, очень важ­ным преимуществом лазера на свободных электронах, как утверждается, является возможность перестройки длины волны излучения, что особенно важно для обеспе­чения более эффективного прохождения излучения в ат­мосфере. Первые экспериментальные установки были слишком громоздкими. Ряд последующих образцов позволил зарубежным специалистам высказать мнение, что в будущем лазеры на свободных электронах найдут применение в системах оружия, размещаемого на космических и авиационных летательных аппаратах.