ЧАСТЬ 2. ФИЗИКА НЕОБХОДИМОГО.
В настоящем и последующем разделах будут рассмотрены понятия и законы классической физики, или, в более общем понимании, физики необходимого. В этих разделах рассматриваются явления, законы теории, в основе которых лежит принцип детерминизма. Идея этого принципа состоит в том, состояние физической системы однозначно определяется ее начальным состоянием и законами ее развития. Под физическими системами подразумеваются структуры, состоящие из вещества или поля.
При наблюдении за каким-либо процессом или явлением относящимся к этим разделам физики, в принципе, всегда можно сказать, как поведет себя система в будущем. Например, упругое тело всегда с необходимостью отскакивает от твердой стенки; вслед за полным оборотом по своей орбите вокруг Солнца Земля с необходимостью сделает следующий.
В разделе «Физика дискретного» рассматриваются законы и явления, связанные с формой материи, существующей в виде вещества, т.е. с материей, локализованной в пространстве. В следующем разделе «Физика непрерывного» будут рассмотрены явления и законы, связанные с другой формой существования материи - полем и волнами. Поля и волны не локализованы в ограниченной части пространства и для их описания требуются другие, отличные от вещества законы.
В следующем разделе настоящего курса - "Физика возможного" мы столкнемся с процессами, которые могут иметь несколько исходов. Например, электрон, сталкиваясь с препятствием (барьером) может либо отскочить от него, либо пройти сквозь него. Последнее возможно лишь для квантовых частиц благодаря так называемому "туннельному эффекту", хорошо известному в квантовой механике. Важнейшим моментом для физики необходимого является строго определенное описание системы , а для физики возможного - вероятностное описание систем. Следствием этого является введение нового детерминизма - вероятностного детерминизма.
6. ЭТАПЫ РАЗВИТИЯ ФИЗИКИ.
Физика - наука, изучающая простейшие и в вместе с тем наиболее общие закономерности явлений природы, свойства и строения материи, законы ее движения. Законы физики лежат в основе всего естествознания. Физика относится к точным наукам и изучает количественные закономерности явлений. Ее законы базируются на фактах, установленных опытным путем. В основе физики лежит научный метод познания.
Слово физика происходит от греческого слова Physic - природа. В эпоху античной культуры наука охватывала всю совокупность знаний человека о природных явлениях. По мере дифференциации знаний и методов исследования из нее выделились различные разделы, в том числе и физика в привычном понимании этого слова. Однако, границы, отделяющие физику от других наук, в значительной мере условны и зависят от общей суммы человеческих знаний.
В истории развития физики обычно выделяют три этапа. Первый из них начинается в античности и заканчивается в 16-ом веке. В это время господствовала метафизики Аристотеля. Второй этап начинается с работ Коперника, Кеплера, Галилея, Декарта, Ньютона и заканчивается в конце 19-го века. На этом этапе идет процесс развития метода научного познания, о котором уже шла речь. И, наконец, третий этап продолжается с начала нашего века по сей день. Это этап развития современной квантовой физики.
Физические явления издавна привлекали внимание людей. В 6-2 веках до н.э. впервые зародились идеи об атомном строении вещества (Демокрит, Эпикур, Лукреций). В это время в работах Птолемея и Аристотеля возникла гелиоцентрическая картина мира и были сформулированы основные законы статики (правило рычага) и гидростатики (закон Архимеда), которые с успехом применялись в строительстве, военном деле и в других областях. Известна легенда об Архимеде, открывшем свой известный закон изменения веса тела в жидкости. Выполняя заказ сиракузского правителя, Архимед должен был определить, какое количество серебра и какое - золота содержалось в сплаве, из которого ювелир должен был сделать корону. В эту эпоху наблюдались и исследовались простейшие проявления электричества и магнетизма.
Итог накопленных знаний подвел Аристотель (384-322 г.г. до н.э.). Из числа дошедших до нас работ наибольший интерес представляют "Первая философия", "Метафизика", "Физика". В этих трудах содержится учение об основных принципах бытия, возможности и осуществлении, форме и материи, действующей причине и цели. Аристотель признавал значение опыта, но не придавал ему решающего значения, считая, что критерием правильности является умозрительное заключение. В средние века учение Аристотеля было канонизировано церковью, что надолго затормозило развитие естественных наук.
Не вдаваясь в сложные рассуждения, рассмотрим основную идею механики Аристотеля, используя современный язык. Как известно из школьного курса физики, согласно второму закону Ньютона ускорение, приобретаемое телом пропорционально сумме действующих на это тело сил: .В основе же механики Аристотеля лежало утверждение, что скорость тела пропорциональна действующей на него силе: . Естественно, что механика Аристотеля и механика Ньютона в корне отличались друг от друга. О втором законе Ньютона речь еще пойдет ниже, а в оправдание Аристотеля отметим, что, если не ставить специальных экспериментов, а только наблюдать за движущимися телами, то видно, как они останавливаются, если к ним не прикладывать дополнительной силы. Сейчас мы, конечно, знаем, что тела останавливаются из-за действия на них сил трения, которые, как правило, бывают пропорциональны скоростям тел. Если же к этим телам приложить некоторою силу, то они станут двигаться с постоянной скоростью, тем большей, чем больше сила тяги. Но легко быть умным, зная ответ на вопрос, и очень непросто самому его найти.
Развитие физики как науки в современном понимании этого слова, т.е. науки в основе которой лежит научный метод познания, началось на рубеже 16-17 веков и связано, в первую очередь, с именем итальянского ученого Галилео Галилея (1564-1642). Галилей понял необходимость математического описания движения материи под которым в его время подразумевалось механическое движение тел - их перемещение в пространстве и времени. Галилей опроверг ошибочные утверждения механики Аристотеля и заложил основы современной механики. Им были сформулированы идеи об относительности движения, установлены законы инерции, свободного падения и движения тел по наклонной плоскости, сложения движений. Галилей показал, что воздействие на тело окружающих тел, определяет не скорость тела, а его ускорение; фактически он открыл два первых закона Ньютона. Столь же велики его заслуги в области астрономии. С помощью построенного своими руками телескопа он открыл горы на Луне, спутники Юпитера, фазы Венеры, темные пятна на Солнце. О Галилее, о его трагической судьбе, о его научных исследованиях и изысканиях написано очень много трудов.
Вряд ли сейчас кто-нибудь вспоминает о том, что Галилей является автором идеи современных маятниковых часов. До него создавалось огромное количество часов, работающих на разных принципах. Все они были недостаточно точны и не позволяли измерять малые интервалы времени - секунды (в то время даже не было понятия о таких малых промежутках времени). Для проведения своих опытов Галилею требовалось измерять время с большой точностью. Он открыл и разработал принцип изохронности колебаний маятника, который положил в основу секундомера. В камне, качающемся на веревке, Аристотель видел лишь сдерживаемое веревкой падение, а Галилей увидел периодический процесс.
Говоря об основоположниках классической физики нельзя пройти мимо Рене Декарта (1596-1650). Французский философ, математик, физик, он заложил основы аналитической геометрии, его имя носит система координат. Он ввел в математике понятие переменной величины и функции, а также ввел множество алгебраических обозначений. В физике он ввел понятие импульса и высказал закон его сохранения. Наибольшую известность получили его работы в области познания.
Основное достижение физики 17-го века - это создание классической механики. Исаак Ньютон (1643-1727) в своем труде "Математические начала натуральной философии" (1687) сформулировал и дал математическую трактовку всем основным законам этой науки, которые дошли практически без изменений до наших дней. Классическая механика лежит в основе многих физических и технических дисциплин, которые изучаются и в наше время специалистами в области науки и техники. Астрономические наблюдения поведения небесных тел в 18-19 веках и открытия новых планет солнечной системы стали блестящими подтверждениями учения Ньютона. Не будем сейчас останавливаться на основных концепциях ньютоновской теории, а вернемся к ним в следующих разделах курса, при изучении законов механического движения.
Благодаря работам Ньютона, основанным на многочисленных экспериментах и наблюдениях, а также на специально разработанных Ньютоном математических методах (методе дифференциального и интегрального исчисления) было окончательно установлено, что задача естественной науки состоит в отыскании наиболее общих количественных формулировок законов природы.
Работы ученых 18-го века продолжили поиски наиболее общих формулировок движения систем, материи. Были заложены основы механики твердого тела, акустики, гидродинамики, теплоты. В 1788 году французский ученый Ж.Л. Лагранж (1736-1813) вывел уравнения механики в наиболее общем виде, получив так называемые уравнения Лагранжа. С их помощью поведение системы описывалось через поведение ее энергии. Эти уравнения до сих пор используются в современных разделах физики - в квантовой механике и электродинамике.
К концу 18-го века была создана единая механистическая картина мира, согласно которой все многообразие мира - результат движения атомов и тел, из которых они состоят и движение которых подчиняется законам Ньютона. Объяснение наблюдаемых физических явлений считалось научным и полным, если их удавалось описать на основе теории Ньютона. Естественно, такие "шоры" не могли устраивать пытливые умы исследователей. Один из интересных эпизодов истории физики относится к теории света. В 17-м веке были выдвинуты две гипотезы. И.Ньютон полагал, что свет - это поток частиц, корпускул, движение которых определяют его свойства и законы. Другой ученый Х.Гюйгенс (1629-1695) считал, что свет - это волны, распространяющиеся в пространстве. Следствием теории Ньютона было то, что скорость света в среде , где - скорость света в вакууме, а - коэффициент преломления света. Из теории Гюйгенса же, следовало, что . Очевидно, что различие этих формул носит принципиальный характер. Однако из-за слабого развития экспериментальной базы вплоть до второй половины 19-го века проверка этих формул была невозможной.