Смекни!
smekni.com

Концепция современного естествознания (стр. 8 из 13)

Рассмотрим примеры полей консервативных и неконсервативных сил. Силы трения или сопротивления являются неконсервативными. Их направление определяется скоростью перемещения тел. Силы трения всегда направлены в сторону, противоположную направлению движения, т.е.: . Здесь - единичный вектор, направленный вдоль скорости тела, а значит, по касательной вдоль траектории его движения. Работа силы трения по замкнутой траектории () равна:

. Здесь и в дальнейшем кружок у интеграла означает интегрирование по замкнутой траектории. Последнее подынтегральное выражение скалярное, оно всегда положительно, следовательно, работа силы трения на замкнутой траектории всегда отрицательна. Эта работа тем больше по модулю, чем длиннее путь. Вывод: силы трения - неконсервативные силы.

Заметим, что кроме сил трения движения, есть еще так называемые силы трения покоя, которые, как это ясно из их названия, обеспечивают телу состояние покоя. Поскольку движения тела не происходит, то и работы они не совершают.

Примером поля консервативных сил является поле тяготения вблизи поверхности Земли. Работа, которая затрачивается на перемещение тела из положения r1 в положение r2равна: . Из этой формулы видно, что работа силы тяжести зависит от величины этой силы и от разности начальной и конечной высот тела. Никакой зависимости от формы траектории нет, а значит, сила тяжести консервативна.

Также просто можно доказать, что консервативными являются силы, создающие однородное поле. Поле сил называется однородным, если в любой точке этого поля сила, действующая на тело одинакова по величине и направлению.

Консервативными являются также поля центральных сил. Центральными называются силы, направленные вдоль линии взаимодействия тел, величина которых зависит только от расстояния между телами. Такому условию удовлетворяют, например, кулоновские силы и силы тяготения.

В поле консервативных сил можно ввести еще один вид механической энергии - потенциальную энергию. Прежде чем ее вводить, выбирают точку, в которой она равна нулю. Потенциальная энергия тела в любой точке пространства определяется работой, которую нужно совершить, чтобы переместить тело из этой точки в точку с нулевой потенциальной энергией.

Отметим два существенных момента, вытекающих из этого определения. Во-первых, поскольку рассматривается поле консервативных сил, значение потенциальной энергии тела зависит от положения тела и выбора точки нулевой потенциальной энергии и не зависит от формы пути, по которому тело перемещается. Во-вторых, поскольку выбор нуля потенциальной энергии произволен, значение потенциальной энергии определяется с точностью до аддитивной постоянной, следовательно физический смысл имеет лишь разность потенциальных энергий или приращение потенциальной энергии, но не сама энергия.

На рис.11.3 мы представили три точки в пространстве поля консервативных сил: точку (b), точку (с) и точку (о), потенциальную энергию в которой будем считать равной 0. Обозначим через Abo работу, которая совершается при переносе тела из точки (b) в точку (o). Если перемещать тело из точки (o) в точку (b), то совершаемая при этом работа будет равна Aob=-Abo, поскольку меняется направление движения, но не меняются действующие на тело силы. Работу по перемещению тела из точки (c) в точку (o) будем обозначать, как Асo. Точно также Асо=-Аос. При перемещении тела из точки (b) в точку (c) совершается работа Abc=-Acb. Согласно определению потенциальной энергии и формуле (11.3) для вычисления работы имеем:

b Eпот(b)

Abo

Аbc O

C Eпот(С) Aco

Рис. 11.3

Оказалось доказанным следующее утверждение: работа, совершаемая при перемещении тела в поле консервативных сил из точки (b) в точку (c), равна разности потенциальных энергий тела в точках (b) и (c). Однако, эта же работа равна разности кинетических энергий в точке (с) и (b).

Получилось, что сумма кинетической и потенциальной энергии тела, которая называется полной механической энергией тела, оказалась неизменной. Тоже самое справедливо и для системы механических тел. Получившееся утверждение носит название закона сохранения механической энергии: полная механическая энергия изолированной системы в которой действуют консервативные силы остается неизменной.

Между консервативными силами и потенциальной энергией должна быть связь, поскольку потенциальная энергия вводится только в поле консервативных сил. Найдем эту связь для простейшего случая, когда потенциальная энергия зависит только от одной координаты. Примером может служит потенциальная энергия вблизи поверхности Земли, к нему и обратимся. Пусть ось (oy) направлена вертикально вверх и имеет ноль на поверхности Земли. Тогда потенциальная энергия зависит только от координаты y и равна: где m - масса тела, ускорение свободного падения вблизи поверхности Земли. Возьмем частную производную по координате y от левой и правой частей равенства: . Справа стоит сила тяжести, которая направлена вверх, т.е. против оси (oy). По-видимому, производной, стоящей в левой части равенства тоже можно приписать направление; ее проекция на ось (oy) будет равна . В случае, когда действующая сила имеет проекции на все координатные оси, можно записать аналогичные выражения и для проекций на другие оси.

Для силы, таким образом, справедливо выражение:

.

В формуле (11.12) введен вектор градиента потенциальной энергии. Определение этого понятия дается в разделе математики, который называется теорией поля. Отметим лишь некоторые свойства этого вектора. Особенность его состоит в том, что вдоль координатных осей нужно откладывать не числа, а математические операции дифференцирования по соответствующей координате. За градиентом обязательно должна стоять скалярная функция, к которой он применяется. Градиент потенциальной энергии имеет направление, в котором потенциальная энергия увеличивается быстрее всего, и величину, равную скорости этого увеличения, если двигаться в этом направлении.

Из сказанного следует, что силы поля заставляют тело двигаться в направлении минимума потенциальной энергии. Все естественные процессы стремятся привести систему к минимуму потенциальной энергии. Этот вывод справедлив не только для механики, но и для других разделов физики и естествознания.

Мы рассмотрели взаимопревращение кинетической и потенциальной энергий в поле консервативных сил. Что происходит, если действуют неконсервативные силы. Мы знаем, что, если телу сообщит скорость (сообщить кинетическую энергию)и пустить двигаться, например, по поверхности земли, оно остановиться за счет сил трения. Его потенциальная энергия не изменится, а кинетическая станет равной нулю, когда оно остановиться. Для ответа на вопрос, во что перешла кинетическая энергия, необходимо ввести еще один вид энергии- внутреннюю энергию. Определим внутреннюю энергию Евн как сумму кинетических и потенциальных энергий частиц (атомов), составляющих тело:

Евн = S(Еiпотiкин) (11.13)

Здесь N -число частиц, i -номер частицы. Параметром, характеризующим внутреннюю энергию является температура тела Т0К, выраженная в градусах Кельвина. Чем больше температура тела, тем с большей скоростью двигаются атомы и тем самым больше внутренняя энергия. Численно внутренняя энергия равна:

Евн=(М/m)C Т0 (11.14)

М - масса тела, m -молярная масса (численно равная атомному или молекулярному весу составляющих атомов),С -теплоемкость, равная энергии, которую нужно передать одному килограмму-молю, чтобы нагреть его на 1 градус Цельсия или Кельвина. Изменение внутренней энергии при переходе системы из состояния 1 в состояние 2 пропорционально изменению температуры тела : Евн(2)-Евн(1) = DU = (M/m)C DT0.

Сумму кинетической, потенциальной и внутренней энергий системы принято называть полной энергией Е. В рассмотренном нами примере с останавливающемся телом кинетическая энергия тела переходит во внутреннюю энергию, т.е. идет на нагревание системы.

С учетом вышесказанного мы можем сформулировать закон сохранения полной энергии системы: Полная энергия изолированной системы остается постоянной. Мы теперь не конкретизируем, какие силы (консервативные или неконсервативные) действуют в этой системе. Работа в системе, совершаемая за счет потенциальной энергии, может переходить и в кинетическую энергию системы, и во внутреннюю энергию. При увеличении внутренней энергии система нагревается.

12. СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ.

12.1 Постулаты теории относительности.

К концу прошлого века Д.К.Максвеллом (1831-1879) были сформулированы основные законы электричества и магнетизма в виде системы дифференциальных уравнений, которые описывали постоянные и переменные электрические и магнитные поля. Решения системы уравнений Максвелла описывали всю гамму поведений электромагнитных полей в пространстве и времени. Из системы уравнений Максвелла следовало, что переменные электрические и магнитные поля могут существовать только в форме единого электромагнитного поля, которое распространяются в пространстве после возникновения с постоянной скоростью, равной скорости света в вакууме - с.