Смекни!
smekni.com

Концепция современного естествознания (стр. 4 из 13)

Разные виды взаимодействия различаются на много порядков по величине действующих сил. Приведем такой пример. Силу тяготения двух песчинок, находящихся на расстоянии 20 м друг от друга нельзя измерить с помощью самых точных и современных приборов. Но, если переместить из всех атомов одной песчинки по одному электрону в атомы другой песчинки, то песчинки будут притягиваться друг к другу с силой ~ 1010 ньютонов.

Поскольку поля заданы в каждой точке пространства, т.е. в бесконечном числе точек, для их описания требуется не конечное, а бесконечное число параметров - степеней свободы. Сказанное не означает, что для описания поля надо реально задавать бесконечное число параметров. Достаточно установить закон, позволяющий находить поле в каждой точке пространства. Таковыми являются: закон всемирного тяготения для гравитационных полей, закон Кулона для электрических полей и закон Био-Савара-Лапласа для магнитных полей.

Особой формой существования материи являются волны. Волна представляет из себя процесс распространения возмущения какого-либо физического параметра в пространстве. Также, как и поля, волна не детерминирована в пространстве, поскольку она с необходимостью распространяется в пространстве и существует в каждой точке пространства. Различают волны в упругих средах (примером которых являются звуковые волны в газах или твердых телах), которые локализованы в самой среде, и волны (электромагнитные, гравитационные), не ограниченные средой, т.е. не локализованные в ограниченной части пространства.

9. СОСТОЯНИЕ СИСТЕМЫ, ЕЕ ИЗМЕНЕНИЕ ВО ВРЕМЕНИ.

После введения понятия вещества и поля перейдем к рассмотрению классических подходов в описании физических явлений. В основе ряда теорий естествознания, в том числе классической физики лежит представление о непрерывности процессов или явлений. Изменение состояния любой системы происходит плавно, непрерывно от одной точки к другой.

Простейшей формой движения материи является механическое движение, под которым мы понимаем перемещение тел в пространстве и времени. Наука, изучающая такой вид движения материи, называется механикой. В естествознании для описания систем вводятся модели. Простейшей моделью, на которой удобно изучать механическое движение, является материальная точка, т.е. тело, имеющее массу, но не имеющее геометрических размеров. Материальная точка - это абстракция, модель; таких тел в природе не существует.

Когда же реальную систему можно заменить точкой? Играют ли при этом решающую роль ее размеры? Тело можно заменить материальной точкой, если в рамках поставленной задачи можно пренебречь его размерами и формой, т.е. если перемещение тела много больше размеров самого тела. Одно и тоже тело в одних условиях можно считать материальной точкой, а в других - нет.

Например, наша планета огромна по сравнению с размерами человека, и если человек огибает земной шар, то его движение можно представить как движение точки на огромном глобусе. В свою очередь, размеры земной орбиты во столько же раз больше размеров Земли, во сколько раз сама Земля больше человека. Так что, и Землю можно считать материальной точкой при ее движении вокруг Солнца.

Еще один пример. При измерении пройденного автомобилем расстояния никому не придет в голову вопрос, до какой точки автомобиля это расстояние мерить, однако, когда тот же автомобиль заезжает в гараж необходимо следить, чтобы он никакой своей частью ни за что не зацепился. В первом случае автомобиль можно заменить материальной точкой, а во втором - нельзя, т.к. обязательно нужно учитывать его форму и размеры.

Таким образом, допустимость модели материальной точки, как, впрочем, и любой физической модели, определяется условиями поставленной задачи и требуемой точностью искомого результата.

Раздел механики, в котором описывается движение тела, и не вскрываются причины, его вызывающие, называется кинематикой.

Для описания движение тела, необходимо ввести систему отсчета, относительно которой задать его координаты, ввести динамические переменные, описывающие изменение положения тела во времени и ввести законы движения тела. Вообще говоря, система отсчета должна в себя включать систему тела, которые мы считаем неподвижными и часы. С системой неподвижных тел необходимо связать систему координат, например декартовых. Положение точки в координатном пространстве задается радиусом-вектором r(t), т.е. вектором, проведенным из начала координат в выбранную точку. Начальное положение тела задается радиусом-вектором в начальной момент времени r0 = r(t0), как это показано на рис.9.1. Положение точки в пространстве с течением времени меняется, и конец радиуса-вектора вычерчивает линию, которая называется траекторией движения.

Траекторию можно разбить на бесконечно малые участки - dr, как это показано на рисунке 9.2. Поскольку перемещение dr, бесконечно мало, оно лежит на траектории движения. Время dt, за которое происходит это перемещение, тоже бесконечно мало. Перемещение dr и время dt связаны друг с другом при помощи динамического параметра - мгновенной скорости, определение которой:

u(t)=dr(t)/dt (9.1).

Траекторию можно разбить на бесконечно малые участки - dr, как это показано на рисунке 9.2. Поскольку перемещение dr, бесконечно мало, оно лежит на траектории движения. Время dt, за которое происходит это перемещение, тоже бесконечно мало. Перемещение dr и время dt связаны друг с другом при помощи динамического параметра - мгновенной скорости, определение которой:

u(t)=dr(t)/dt (9.1).

dr

Dr

r(t0)= r0

r(t)

r(t)

O O

Рис.9.1 Рис. 9.2

Траекторию можно разбить на бесконечно малые участки - dr, как это показано на рисунке 9.2. Поскольку перемещение dr, бесконечно мало, оно лежит на траектории движения. Время dt, за которое происходит это перемещение, тоже бесконечно мало. Перемещение dr и время dt связаны друг с другом при помощи динамического параметра - мгновенной скорости, определение которой:

u(t)=dr(t)/dt (9.1).

Таким образом, dr = udt, следовательно, направление мгновенной скорости совпадает с направлением элементарного перемещения dr. Иными словами, мгновенная скорость всегда направлена по касательной к траектории. По правилу сложения векторов сумма всех dr плюс r0 даст нам вектор r. Но, операция суммирования по бесконечно малым величинам называется интегрированием. Таким образом, проясняется наглядный смысл интегрирования векторной функции и правило вычисления значения r(t), в любой момент времени.

r(t)=r0+u(t)dt (9.2)

Скорость материальной точки, в свою очередь, тоже может меняться со временем. Удобно ввести еще один динамический параметр - ускорение, которое тоже является векторной величиной и тоже может зависеть от времени и координат:

a(t)=du(t)/dt (9.3).

Из этого определения следует, что du(t)=a(t)dt. Если функция a(t) известна, то с ее помощью можно найти скорость тела в любой момент времени, а зная ее, при помощи (9.2) можно найти положение тела в любой момент времени.

u(t)=u0+а(t)dt (9.4),

r(t) = r0 +(u0 +а(t)dt)dt или

r(t)=r0+u0(t-t)+а(t)dtdt (9.5).

В этих формулах u0 - начальная скорость тела, т.е. его скорость в момент времени t0.

Таким образом, если нам известны начальное положение материальной точки - r0 и начальная скорость - u0, а также зависимость вектора скорости или вектора ускорения от времени, можно найти координаты системы в любой последующий момент времени - r(t).

Только что мы рассмотрели и обозначили путь решения основной задачи кинематики. При решении этой задачи не ставился вопрос, за счет чего меняется ускорение тела, но в рамках кинематики такой вопрос не ставится. Рассматривалось положение тела в произвольные моменты времени.

В ряде случаев требуется найти не только положение тела, но и тот путь, который оно пройдет. Пройденный путь есть скалярная величина, она обозначается S и численно равна длине траектории. Из рисунка очевидно, что путь в общем случае не равен длине (модулю) вектора перемещения r. Чтобы найти пройденный путь S необходимо просуммировать длины вектора dr, т.е. провести интегрирование по модулю вектора dr: