.
Таким образом, к середине 19-го века были окончательно сформулированы законы сохранения массы и энергии, которые трактовались как законы сохранения материи и движения.
В начале 20-го века оба эти закона подверглись коренному пересмотру в связи с появлением специальной теории относительности. Как уже отмечалось релятивистская масса зависит от скорости, следовательно, характеризует не только количество материи, но и ее движение. В разделе 12.3 выведена самую знаменитую формула 20-го века - формулу (12.10), связывающую массу и энергию тела:
.
В специальной теории относительности естественным образом слились законы сохранения массы и энергии, существовавшие в классической механике порознь. По отдельности эти законы не выполняются. Невозможно охарактеризовать количество материи (ее массу), не учитывая движения (взаимодействия) материи. Это является отражением философской концепции о неразделимости материи и движения.
Формулу иногда ошибочно интерпретируют, как тождественность массы и энергии. Это не правильно. Данная формула означает, что между энергией (мерой движения) и массой (мерой количества матери) существует взаимосвязь. Энергия и масса могут взаимно превращаться друг в друга. Количественное соотношение, определяющее этот переход и дается формулой (13.4).
В настоящее время обобщенный закон сохранения энергии можно сформулировать в следующем виде. Полная энергия замкнутой системы, включающая энергию, эквивалентную массе этой системы, не изменяется во времени.
Естественно, что вплоть до наших дней, до развития такой области физики, как атомная и ядерная физика, нельзя было найти отклонения от законов сохранения массы и энергии в их первоначальных формулировках. Конечно, если мы увеличим скорость тела, то его масса изменится. Но, для реальных тел макроскопического размера никакими весами и сейчас мы не сможем найти изменение этой массы. Например, если скорость движения человека массой 100 кг равна 100 м/с, то его энергия движения равна 1000000 Дж. Эта энергия эквивалентна массе 10-11 кг, которую невозможно определить никакими современными методами на фоне собственной массы в 100 кг. Этот пример показывает, что на современном этапе развития техники как правило можно пользоваться старой формулировкой закона сохранения энергии.
Приведем еще один пример, показывающий, когда нужно применять новую формулировку закона сохранения энергии, и позволяющий дать интерпретацию нового закона сохранения энергии. При делении ядра урана сумма масс дочерних ядер меньше исходного ядра. Разность этих масс в соответствии с формулой (13.4) переходит в кинетическую энергию осколков деления - дочерних ядер. Масса системы (т.е. ядра) уменьшается, но увеличивается кинетическая энергия системы. Энергия при полном делении всего 1 г урана как раз и равна энергии взрыва бомбы над Хиросимой в 1945 году.
Эволюция закона сохранения энергии интересна с двух точек зрения. С одной стороны, законы сохранения, будучи почерпнутыми из опыта, нуждаются в постоянной экспериментальной проверке, в уточнении. Нельзя быть уверенным, что с расширением пределов человеческого опыта данный закон (или его конкретная формулировка) останутся справедливыми и не потребуют уточнения границ, в рамках которых они остаются справедливыми. С другой стороны, в законе сохранения энергии теснейшим образом переплелись физика и философия. Этот закон, все более уточняясь, постепенно превратился из абстрактного и неопределенного философского высказывания в точную количественную формулу.
Другие законы сохранения (импульса, момента импульса, заряда и т.д.) возникли практически сразу в количественной формулировке и не требовали в дальнейшем уточнения.