Смекни!
smekni.com

Концепция современного естествознания (стр. 10 из 13)

Рис.12.2

Рассмотрим эксперимент по синхронизации часов, базируясь на постулатах теории относительности. Представим себе следующую ситуацию (см. рис.12.2). Первый наблюдатель 1 стоит на земле и мимо него двигается вагон, в середине которого стоит второй наблюдатель 2. В начале и конце вагона расположены часы (1) и (2) которые нужно синхронизовать. Это проще всего сделать следующим образом. Второй наблюдатель в вагоне посылает свет в две стороны и в момент прихода света на часы, они включаются с нуля и идут синхронно. С точки зрения наблюдателя в вагоне часы показывают одинаковое время. Рассмотрим, что покажут часы первому наблюдателю, стоящему на земле.

Скорость распространения света постоянна в любой системе отсчета. Пока свет распространяется в конец вагона, часы 1 переместятся ему навстречу и будут включены раньше. Часы 2 уйдут за время распространения света и будут включены позднее. Таким образом, с точки зрения первого наблюдателя часы будут показывать разное время , а с точки зрения второго наблюдателя - одинаковое. Время будет разное для двух разных наблюдателей, находящихся в различных инерциальных системах отсчета.

К этому же результату можно прийти и чисто формально, при помощи преобразований Лоренца. Покажем это. Пусть в неподвижной системе отсчета К два события происходят одновременно, т.е. . Найдем разность в системе отсчета К’, перемещающейся относительно К вдоль оси x со скоростью u. Для этого воспользуемся преобразованием Лоренца для времени.

Не вдаваясь в детальный анализ, укажем, что изменение длительности промежутков времени не касается принципа причинности: если из двух событий, одно является следствием другого и разделены промежутком времени, то в любой инерциальной системе отсчета эти события также разделены промежутком времени, и последовательность событий не нарушается. Т.е. следствие всегда идет после причины.

Рассмотрим парадокс, следующий из преобразований Лоренца. Пусть в одной точке пространства в системе отсчета К произошли два события (например рождение и смерть человека) в моменты времени t1 и t2, соответственно. Промежуток времени между этими событиями в системе отсчета К равен . В движущейся системе отсчета K’ промежуток времени между этими событиями другой, что следует из преобразований Лоренца для времени. Теория относительности позволяет связать длительности промежутков времени в системе отсчета наблюдателя и в системе отсчета, связанной с наблюдаемыми объектами (собственное время).

.

В разных системах отсчета, двигающихся относительно друг друга время течет по разному, причем в системе отсчета, связанной с объектом наблюдения часы идут медленнее всего, т.е. собственное время всегда минимальное. Собственное время - еще один инвариант преобразований Лоренца, в какой бы инерциальной системе отсчета его ни вычисляли, всегда должен получиться одинаковый результат. Формула (12.3) неоднократно обыгрывалась в фантастических романах, когда отец улетал к звездам на космолете с большой скоростью, возвращался обратно молодым, а его сын, остававшийся на Земле уже успевал состарится.

Обратимся еще раз к примеру, приведенному в параграфе 12.1, в котором рассматривалось взаимодействие двух движущихся зарядов, и ответим на вопрос, почему же все-таки силы взаимодействия окажутся для разных наблюдателей разными. Ответ на него заключается в том, что в движущейся системе отсчета время течет медленнее, и ускорение, а значит, и сила взаимодействия уменьшится.

Кроме изменения хода часов наблюдается изменение размеров (укорочение) быстро движущихся объектов. Этот эффект тоже может быть выведен из преобразований Лоренца. Связь длины отрезка, направленного вдоль скорости движения, в системе К (наблюдаемая длина ) и в системе K’ (собственная длина ) задается формулой:

.

Таким образом собственная длина всегда максимальна. Отметим, что сокращаются лишь размеры тела вдоль направления скорости системы K’. Изменение размеров - кажущийся, ненаблюдаемый эффект. Размеры мы определяем, сравнивая длину линейки с размерами тела. Но, и сама линейка в другой системе координат будет менять свои размеры одновременно с телом. Этот эффект напрямую нельзя наблюдать.

Как ни странно, именно сокращение длины и замедление хода времени, предсказанные в теории относительности, удалось наблюдать еще в 30-е годы нашего века. Исследовались нестабильные частицы m-мезоны. Время жизни m-мезонов было измерено, . За это время частица могла пролететь расстояние не превышающее . Однако, m-мезоны могли рождаться лишь на высоте 20-30 км при столкновении космического излучения с ядрами атомов в атмосфере. Казалось бы, все они должны распасться еще в верхних слоях атмосферы, но приборы на земле уверенно регистрировали их. Объясняется это тем, что рождались они с очень большими скоростями, близкими к скорости света. В соответствии с формулой (12.3) течение времени в их их системе отсчета замедлялось и они успевали пройти расстояние в несколько десятков километров. Но как объяснить это же явление, если наблюдать за частицами в их собственной системе отсчета, ведь в этой системе время жизни частиц составляет действительно . А в этом случае для частиц сокращается длина пройденного ими пути. m-мезоны пролетают десятки километров и достигают земли, но для них в полном соответствии в формулой (12.4) длина этого пути сокращается до нескольких сотен метров. Таким образом, наблюдение одного природного явления подтвердило сразу два, казалось бы, абсурдных следствия из преобразований Лоренца.

В настоящее время существуют очень точные часы, которые показали, что время на движущихся искусственных спутниках Земли отстает от земного времени на 1 секунду за 44 года.

В релятивистской механике предсказан еще целый ряд парадоксальных с точки зрения классической механики явлений. В настоящее время большинство из них наблюдались в экспериментах. При этом не наблюдалось отклонений от предсказаний специальной теории относительности.

12.3 Релятивистская динамика, масса покоя, связь массы и энергии

В параграфе 10.3 обсуждалась инвариантность законов классической механики относительно преобразований Галилея. Преобразования Лоренца связывают не только координаты с координатами, но и время с координатами и наоборот. Естественно, что законы классической механики неинвариантны по отношению к преобразованиям Лоренца. При создании релятивистской механики перед Эйнштейном встал вопрос, как записать второй закон Ньютона, чтобы он был инвариантен относительно преобразований Лоренца. Эйнштейном был получен явный вид основного уравнения динамики в релятивистской форме.

Сначала нужно ввести импульс, который сохранялся бы в любой инерциальной системе отсчета. Традиционный классический импульс оказывается неинвариантен по отношению к преобразованиям Лоренца и, как следствие, не сохраняется. Однако, если не меняя формы записи, измерять перемещение в лабораторной системе отсчета К, а промежуток времени - в системе отсчета K’, связанной с телом, то импульс будет инвариантен к преобразованиям Лоренца и будет сохраняться. Нужно заменить на . Связь промежутков времени в различных инерциальных системах отсчета задается формулой (12.3). .

Здесь mo - классическая масса тела, u - его скорость, измеряемая в лабораторной системе К, а m - релятивистская масса: .

Таким образом, импульс тела формально записывается также, как и в классической механике, но понятие массы наполняется новым содержанием. Масса в специальной теории относительности зависит от скорости частицы. Классическую массу частицы mo можно назвать массой покоя. Масса покоя равна массе тела, измеренной в той инерциальной системе отсчета, где тело покоится. Ни в какой системе отсчета масса тела не может быть меньше массы покоя. Масса покоя - еще один инвариант преобразований Лоренца.

Основное уравнение динамики движения релятивистской частицы имеет вид, схожий с основным уравнением движения классической динамики: однако, при дифференцировании по времени правой части нужно учесть, что релятивистская масса не есть постоянная величина. Отметим, что классическая формулировка второго закона Ньютона несправедлива даже с релятивистской массой.

Уравнения динамики релятивистской частицы (12.5-12.7) нашли блестящее подтверждение уже в 30-х годах нашего века при разработке первых ускорителей электронов, которые были названы бетатронами. На бетатронах электроны ускорялись в переменных электрических полях и приобретали скорость, сравнимую со скоростью света. Тогда то и было обнаружено, что масса частицы и траектория ее движения зависят от скорости в полном соответствии с формулами (12.5-12.7).

Уравнения релятивистской динамики позволили Эйнштейну найти связь массы и энергии тела. Попробуем вслед за ним найти количественной соотношение между этими величинами. Для этого преобразуем уравнение (12.6):

Если дифференциалы величин равны, то сами величины могут различаться на постоянную величину: . Значение этой константы можно найти из условия, что при , выражение для кинетической энергии должно стремиться к Значение ее окажется равным . Таким образом, получаем релятивистское выражение для кинетической энергии: .

Отметим, что классические выражения для кинетической энергии, как неприменимы, даже если в них подставить релятивистские массы.

Второе слагаемое в этом выражении имеет смысл энергии покоя, внутренней энергии тела, энергии связанной с самим фактом существования тела и наличием у него массы в неподвижном состоянии. Сумма кинетической энергии и энергии покоя называется полной энергией тела. Выражение для полной энергии можно получить из формулы (12.9).

.

Мы получили самую известную формулу 20-го века, которая устанавливает количественную связь между энергией и массой. Ее можно трактовать следующим образом. Между полной энергией системы Е и ее массой m существует связь, определяемая формулой (12.10). Энергия при определенных условиях может переходит в массу, а масса - в энергию. Однако, понятие энергии не сводится только к массе и наоборот, масса не сводится только к энергии. Тем самым установлена связь между мерой количества материи - массой и мерой движения материи - энергией. Эта связь является отражением факта, что материя без движения, также, как и движение без материи не существует.