Медленние развитие трещины под нагрузкой L может продолжаться часы, дни и доже годы в зависимости от отношения L/L0 . Это развитие завершиться катастрофическим разрушение те разделением объекта магистральной трещиной. Условие этого разрушения определено Гриффитсом-Ирвиным, как
a – длина трещины
Y – коэфициент, учитывающий форму дефекта, а так же соотношение его разрмеров и размеров тела.
K – коэфициент интенсивности напряжений. Kc критическое значение K для данного материала (характеризует сопротивление материала, трещиностойкость, часто называется вязкостью разрушения)
Как ясно из условия Гриффитса предел прочности
Для быстрой оценки предела прочности без разрушения часто используют пробу на твердость.
Твердость – это способность материала противостоять проникновению в него другого тела. Твердость определяется методом царапания или методом вдавливаия каменного шарика (твердость которого повышена термообработкой). В инжинерной практике используют пробу Бренеля, вдавливая в поверхность каменный шарик. Твердость по Бринелю HB=F/S F – максимальное значение приложенной нагрузки, S – площадь сферической поверхности отпечатка.
Термостойкость – стойкость термических удатов те срапроивление разрушению при быстрой смене температур.
Ее оценивают по числу термоциклов, необходимых ля разрушения образца.
Химическая стойкость – стойкость против коррозии (разьедание, разрушение под действием среды). Характеризуют либо массой вещества, притерпевающей химическое изменение за какое – либо время, либо измением других свойств. Иногда выделяют стойкость против биологического воздействия те сопротивление разрушению микроорганизмами.
§1 Характеристика основных классов.
Отличительной особенностьюновых направлений техники является интенсификация рабочих процессов, что связано с ростом рабочих t и давления, ускорением электрических превращений. В связи с эим конструкционные материалыдолжны обладать механической прочностью, огнеупорностью, хим и терм стойкостью.
Материалы, обладающие при высокой t сверхпроводниковыми, диэлектрическими и оптическимии свойствами называются конструкционными.
В настоящее время выделяют 4 осноных класса кострукционных материалов:
· Металлы и их сплавы
· Материалы на основе полимеров
· Камни(природные), искуственные в тч керамика, стекло
· Композиты этих материалов
Для материалов и сплавов характерны пластичность и электропроводность, хорошая механическая прочность, но низкая химическая стойкость (легко окисляются при нагревании и плавяться или испаряются)
Основным достоинством полимеров и материалов является химическая стойкость, легкость, сравнительная дешевизна, электроизоляционные свойства. Пласмассы могут быть получены в виде тонких нитей и пленок, однако легко разрушаются при нагревании и имеют относительно низкую прчность.
В электрической технике используют как природные камни(мрамор для электрощитов), так и искуственные: бетон(крупно и мелко зернистый), керамику, стекло.
Бетон используют для массивных элементов конструкций (опор ЛЭК), мелкозернистый бетон исползуют в частности для крепления электроизоляторов стержневых и подвесных.
Керамика - неорганический материал, полученный консолидацией неметаллических частиц. Их консолидацию можно достичь либо стеканием (обжигом), либо минеральными вяжущими веществами, например цементом(с учетом этого определения бетон можно рассматривать, как безобжиговую керамику).
Неорганическое стекло – это гомогенная масса, полученная при столь быстром охлаждении расплава минералов, что не успевают образоваться центры кристаллизации. Промежуточное положение м/у стеклом и керамикой – стеклокерамика(ситаллы), в которой успевают образоваться отдельные центры кристаллизации. Стеклокераммические материалы отличаются от некоторых стекол более высокой ударопрочностью, твердостью, огнеупорностью.
§2 Сплавы, диаграммы состояния двухкомпонентного сплава.
Черные - железо, никель, хром, марганей и их сплавы: сталь, чугун.
Цветные – медь, свинец, цинк, алюминий олово и их сплавы: бронза, латунь, алюминиевые сплавы и тд
Сплав – вещество, полученное сплавление двух иди более элементов, которые называют компонентами.
Фаза – однородая по химическому составу и структуре часть сплава. А и В их химическое соединение, жидкий или твердый раствор А в В или В в А.
Твердый раствор образуется при проникновении атомов одного компонента в кристаллическую речетку другого, называемого растворителем.
При охлаждении чистого металла, как и при охлаждении воды на графике изменения T во времени (рис 2)
Горизонтальный участок, обусловленный кристаллизацией при Tплавления (1 и 6 кривые). При охлаждении сплава првые кристаллы появляются при температуре…
Здесь ACD - линия начала кристаллизации сплавов (линия ликвидус); AECF - линия окончания кристаллизации сплавов (линия солидус), PSK- линия перлитного или эвтектоидного превращения (соответствует температуре перестройки решетки при охлаждении А, содержащего 0,8 % С); GS - линия превращения А в Ф при охлаждении (зависимость температуры перестройки кристаллической решетки от концентрации С в А); SЕ - линия предельной растворимости С в А (зависимость растворимости С в Fe от температуры).
§3 Классификация электротехнических метериалов.
ЭТМ – материалы, исполуемые в электротехнике, в частности в электронной и радио технике.
Их классифицирут по поведению с электрическом иди магнитном поле.
3.1 Классификация ЭТМ по поведению в магнитном поле.
Клоссификация ЭТМ по поведеню магнитном поле ведут по значению относительной магнитной проницаемости
Н- напряженность магнитного поля
m0 – магнитная постоянная
Слабомагнитные материалы (m»1):
1. Диамагнетики
2. Парамагенитки
3. Антиферромагнетики
Диамагнетики – вещества с m<1, которые не зависит от напряженности магнитного поля. Зависимомть m от T слабая. Внешним проявление диамагнетика является выталкивание его из неоднородного магнитного поля.К диамагеникам относяться медь, серебро, цинк, золото, водород и инертные газы. Для Сu m=0,999995
Антиферромагнетики - вещества с m³1, и сильно зависящие от напряженности магнитного поля. Зависимомть m от T сильная. При нагревании антиферромагнетики фазовый переход в парамагнитные состояния. Антиферромагнетизм обнаружен у хрома, марганца, оксидов редкоземельных элементов (элементы с номерами 57-71)
В диамагнетке внешнее магнитное поле ослабляется, а в парамагнетике и антиферромагнетике усиливается магнитными моментами атомов.
Магнитный момент атомов - образуется геометрически из магнитных моментов всех его электронов.
Магнитный момент электрона состоит из мангитных моментов, обусловленных вращением вокруг ядра и вокруг собственной оси. Первый из них называется орбитальным, а второй спиновым магнитным моментом.
Сильномагнитные материалы m>>1 или магеники – вещества m которых в большей степени зависит от напряженности магнитного поля и температуры. В кристаллах магнетика существуют области (домены) и в домене магнитные моменты атомов параллельныдруг другу и создают магнитный момент домена .
При отсутствии внешнего магнитного поля домены магнитных моментов отдельных атомов различны при наложении внешнего магнитного поля происходит постепенный рост числа доменов, намагниченность которых совпадает с внешним полем или близка к направлению внешнего поля. Когда все магнитные моменты доменов сорентированы по полю, то наступает магнитное насыщение .
По удельному сопротивлению магнетикиделят на
1. Ферромагнетики (железо, никель, кобальт и их сплавы)
2. Ферримагеники (ферриты r>rFe d 106-1011 раз)
Феррит – это соединение оксида железа с оксидом другого метеалла (ВаО*6Fe2O3 – барриевый феррит)
Достоинства ферритов : У них из-за высокого r потери на вихревые токи в высокочастотных электромагнитных полях(108 Гц) малы.
Первые ферриты появились в конце 70-х. Зависимость магнитной индукции В от напряженности Н при цикличном намагничивании образует петлю.