Многослойный керамический конденсатор - уменьшенный вариант лейденской банки. На практике в качестве диэлектрика в керамических конденсаторах используется титанат бария с добавлением небольшого количества других оксидов. Такие керамики, имеющие диэлектрическую проницаемость в пределах от 2000 до 6000, в исходном состоянии представляют собой тонкодисперсный порошок, частицы которого имеют диаметр несколько микрон. Порошок смешивают с растворителем, содержащим связующее вещество, которое потом соединит равномерно рассредоточенные в растворе частицы керамики. Полученная смесь в виде жидкой глины имеет такую же консистенцию, как и краска. Смесь разливают слоем толщиной несколько сотых долей миллиметра на бумажную или стальную ленту и высушивают. Пленка режется на квадратные пластины размером 15-20 см; на каждую такую пластину методом печатного монтажа наносится несколько тысяч обкладок через специальный трафарет, задающий их конфигурацию. Для нанесения обкладок используется серебряно-палладиевая суспензия.
После того как обкладки нанесены, берут 30-60 пластин и спрессовывают их между несколькими слоями таких же пластин, на которые обкладки не наносились. Полученные заготовки конденсаторов обжигаются в печи с медленным нагревом до 1000-1400°С.
Электролитический конденсатор можно уподобить лейденской банке из очень тонкого стекла, уменьшенной до размеров небольшого куба. Он изготавливается из куска металла с 60%-ной пористостью. Для большинства современных электролитических конденсаторов используют измельченный тантал - твердый металл серого цвета. Порошок тантала спрессовывается и затем в течение нескольких часов полученную заготовку нагревают в вакуумной камере до температуры, близкой к 2000°С. В результате частицы металла спекаются, плотно сцепляясь друг с другом. Образуемые при этом небольшие ниши и щели в толще спрессованного порошка повышают поверхностную площадь заготовки, которая потом будет служить одной из обкладок конденсатора. Затем в электролитической ванне заготовку подвергают анодированию, чтобы на поверхностях пор получить изолирующий слой оксида тантала. Потом заготовку погружают в раствор нитрата марганца. В ее порах после нагрева осаждаются частицы полупроводящего диоксида марганца, слой которых играет роль одной обкладки, а танталовые частицы под слоем оксида тантала - другой обкладки. Конденсатор сначала покрывают графитовой, потом серебряной краской, напыляют слой никеля и заделывают в корпус.
Несмотря на то что электролитические конденсаторы имеют наибольшую удельную емкость по сравнению с другими типами конденсаторов, область их применения ограничена. Во-первых, это объясняется тем, что подводимое к нему напряжение должно иметь определенную полярность, которую нельзя менять. Эта особенность допускает использование электролитических конденсаторов только в цепях постоянного тока. Во-вторых, электролитические конденсаторы более подвержены пробою, поскольку слои диэлектрика в нем очень тонкие.
Список использованной литературы
1. Справочник по электротехническим материалам. Том 3. Л. «Энергия», 1988.
2. Добрынин А.В., Казаков Н.П., Найда Г.А., Подденежный Е.Н. и др. Нитрид алюминия в электронной технике. Ж. «Зарубежная электронная техника», №4 1989.
3. Носов О.Н. Оптоэлектроника. М. «Высшая школа». 1976.
4. Журнал «Радио» №4 1991год.
5. Тихонов С.Н. «Электротехника для начинающих» М. «Военное издательство министерства обороны СССР» 1969г.
6. Справочник «Конденсаторы» М. «Радио и связь» 1987.
7. Терещук Р.М., Терещук К.М., Седов С.А. «Полупроводниковые приемно-усилительные устройства, справочник радиолюбителя». Издание 4-е стереотипное. Киев. «Наукова думка» 1988.
8. В. А. Ацюковский - «Емкостные датчики перемещения»
9. Журнал “Радио”, номер 12, 1978 г.
10. Виноградов Ю.В. “Основы электронной и полупроводниковой техники”. Изд. 2-е, доп. М., “Энергия”, 1972 г. - 536 с.