Смекни!
smekni.com

Колебания системы Атмосфера - Океан - Земля и природные катаклизмы. Резонансы в Солнечной системе, нарушающие периодичность природных катаклизмов (стр. 5 из 7)

Однако последующие расчеты в еще более высоком порядке теории возмущений, выполненные в 1897 г. Хиллом, показали, что и Леверье был не прав. Сохраняя все больше членов разложения, мы получаем новые частоты, сильно отличающиеся от прежних. В таком случае говорят, что ряд теории возмущения не сходится.

Анализ всей проблемы заново провел Пуанкаре. В трехтомном труде «Новые методы небесной механики», опубликованном в 1892 – 1897 гг., он показал, что задача трех тел, движущихся впод действием сил взаимного тяготения, не интегрируется (т.е. не может быть решена аналитически). Пуанкаре доказал, что безусловно, можно искать решение в виде ряда теории возмущений, но все равно ряд не может описать реальное движение планет. Оказывается, получаемые ряды являются, как говорят математики, асимптотическими. Свойство таких рядов заключается в том, что учет первых нескольких членов приводит к сходящемуся результату (каждая следующая поправка меньше предыдущей), однако сумма ряда расходится. Решения, получаемые обрыванием асимптотических рядов, могут с хорошей точностью описать поведение системы на конечном отрезке времени, однако оказываются совершенно непригодными при анализе устойчивости системы за большой промежуток времени.

Совсем недавно, в 60-х гг. нашего столетия, была создана теория КАМ (по именам выдающихся современных математиков Колмогорова, Арнольда и Мозера), позволившая уточнить результаты Пуанкаре. Метод теории возмущений заключается в поиске таких замен переменных, которые позволяют привести систему к интегрируемой и искать малые отклонения от нее, т.е. свести движение к суперпозиции (почти) равномерных движений по окружностям. Теория КАМ показывает, что при некоторых начальных условиях общее движение действительно является квазипериодическим, как и в случае интегрируемых систем. Однако при других значениях начальных условий появляются области неустойчивости (области хаотического движения), в которых происходят значительно более сложные явления, и методы теории возмущений оказываются неприменимыми. Чем меньше параметр e, тем ближе движение к квазипериодическому и тем меньше области неустойчивости. В этом случае теория возмущений хорошо работает, приводя к приближенным результатам, очень близким к реальности.

В случае систем с двумя степенями свободы Пуанкаре предложил очень полезный метод, позволяющий отличить квазипериодическую траекторию от хаотической. Вместо того, чтобы изучать саму траекторию в фазовом пространстве, изучают последовательные пересечения этой траектории с должным образом выбранной плоскостью (или – в общем случае – с поверхностью).

Что же такое фазовая траектория? Рассмотрим для определенности одномерный гармонический осциллятор – колебательную систему, образом которой может служить груз на горизонтальной плоскости без трения, соединенный с упругой пружиной жесткостью k. Груз совершает колебания по закону:

X = Acos(wt + j), следовательно, скорость груза V= - Awsin(wt + j) и импульс p = - mAwsin(wt + j). Как известно, упругая потенциальная энергия сжатой пружины U = kX2 /2. Полная энергия груза равна E=mV2 /2 + kX2 /2 = p2 /(2m) + kX2 /2. Если на плоскости построить график зависимости импульса груза p от координаты х, это и будет фазовая траектория. Благодаря закону сохранения энергии в случае одномерного движения задача определения формы фазовой траектории решается просто, так как формулу закона сохранения энергии можно переписать в виде:

Это есть уравнение эллипса на плоскости (р,х). Каждому значению энергии Е, определяемому начальными условиями, отвечает единственная фазовая траектория осциллятора.

Чтобы изучить фазовую траекторию системы с двумя степенями свободы (размерность фазового пространства равна тогда 4), следует рассмотреть сечения фазового пространства должным образом выбранной плоскостью А, отвечающей фиксированному моменту времени. В результате получается сечение Пуанкаре. В некоторых случаях удается точно найти преобразование координат плоскости, позволяющее переходить от одного сечения к другому. Существует стандартный вид такого преобразования, задаваемого формулами:


x’ = x + asin(x + y),

y’ = x + y

где подразумевается, что штрихованные координаты вычислены по модулю 2p.

Иногда удается найти преобразование переменных, позволяющее переходить от одной точки в фазовом пространстве к другой. В этом случае можно изучить поведение системы за длительный период времени, используя ЭВМ. Простой пример таких преобразований показан на рис.6, где в сильно упрощенном виде показаны разные типы возможных траекторий.


Рис. 6

В центре графика показаны орбиты, отвечающие малым значениям параметра возмущения; они представляют собой замкнутые гладкие кривые. Во внешней области появляются шесть областей устойчивости, внутри которых структура похожа на ту, которая имеется в центре. Вокруг каждого из островов устойчивости существует область неустойчивости, хаотическая зона. Она соответствует области колебания маятника вблизи границы, где движения сильно зависят от начальных условий и могут быть очень нестабильны. Приведенный рисунок получен в результате численного моделирования на ЭВМ и полностью согласуется с результатами теорий Пуанкаре и КАМ. Рисунок тем и замечателен, что он был теоретически описан математиками еще до появления ЭВМ.

ГИПЕРИОН И ПОЯС АСТЕРОИДОВ КАК ИЛЛЮСТРАЦИЯ ХАОТИЧЕСКОГО ДВИЖЕНИЯ. РЕЗОНАНСЫ В ДВИЖЕНИИ НЕБЕСНЫХ ТЕЛ.

Теоретическое существование хаотических режимов движения в системах, подчиняющихся законам небесной механики, совсем не означает, что эти режимы должны обязательно наблюдаться. Их можно наблюдать только в том случае, если орбитальные параметры каких-то тел Солнечной системы существенно меняются за время, много меньшее возраста самой этой системы.

Одним из первых примеров можно взять поведение Гипериона, спутника Сатурна, фотографии которого были получены в 1981 г. космическим зондом «Вояджер-2». Гиперион представляет собой бесформенную глыбу, длина которой вдвое больше ширины (самый малый поперечный размер 200 км.). Хаотическая форма Гипериона объясняется существованием области неустойчивости при движении в системе Гиперион – Титан – Сатурн, да и сам Гиперион хаотично вращается вокруг своей оси.

Сечение Пуанкаре траектории Гипериона, рассчитанное на ЭВМ, соответствует стационарной орбите, возникающей в результате резонанса движений двух спутников Сатурна – Титана и Гипериона (резонансом в данном случае является такое движение спутников вокруг планеты, когда время обращения одного кратно времени обращения другого). Однако, если начальные условия совсем немного отличаются от тех, которые соответствуют этой орбите, траектории попадают в зону неустойчивости. Тело, помещенное на неустойчивую орбиту, будет рано или поздно выброшено из системы Сатурн – Титан – Гиперион при сближении с Титаном. Итак, теперь можно дать объяснение бесформенности Гипериона. За время своего существования Гиперион испытал многократные столкновения со сравнительно небольшими телами, обильно населяющими окрестности Сатурна. Куски Гипериона, которые были отколоты в результате таких ударов, собрались вокруг него под действием сил гравитации в гигантское облако. Однако благодаря наличию зоны неустойчивости вблизи орбиты Гипериона, эти осколки не упали обратно на Гиперион, а были постепенно (за время, много меньшее времени жизни самого Гипериона) выброшены из системы Сатурн – Титан – Гиперион в окружающее пространство.

Есть и другой тип неустойчивости при движении тел в Солнечной системе. Большинство спутников планет и даже одна из планет (Меркурий) совершают движения, жестко определяющиеся резонансом между вращением вокруг оси и обращением вокруг планеты или Солнца: за время полного оборота по орбите они обращаются вокруг своей оси целое число раз. Именно по этой причине Луна повернута к нам всегда одной стороной. Она вращается вокруг своей оси с тем же периодом, что и период ее вращения по орбите вокруг Земли (резонанс 1:1). Такое синхронное вращение установилось постепенно, за время порядка времени существования Солнечной системы. Физическая причина этой резонансной настройки двух вращений – приливные гравитационные силы, постепенно тормозящия вращение Луны вокруг своей оси и меняющиеся с периодом, равным периоду обращения Луны вокруг Земли.

Как было показано в 1984 г., Гиперион близок как к этому резонансному состоянию (1:1), так и к резонансному состоянию 3:2. Российский физик Б.Чириков показал, что в такой ситуации, когда динамическая система пытается установить согласие между двумя резонансными состояниями, возникает неустойчивость. Действительно, недавние наблюдения подтверждают, что направление оси вращения и угловая скорость Гипериона изменяются случайным образом на протяжении времени в несколько периодов обращения по орбите (21 день).