Смекни!
smekni.com

Колебания и волны (стр. 2 из 6)


Вообще обозначая продолжительность периода , выраженную в секундах, через T, а частоту, выраженную в герцах, через v, будем иметь

Динамика гармонических колебаний.

Рассмотрим динамику свободных колебаний в идеальных колебательных системах без трения.

Отведем шар пружинного маятника от положения равновесия. В этом случае на шар действует возвращающая сила, направленная в сторону положения равновесия.


Ее проекция имеет знак, противоположный знаку смещения x


Аналогично обстоит дело в случае математического маятника. Отведем маятник от положения равновесия. В этом случае равнодействующая силы тяжести и силы упругости нити направлена в сторону положения равновесия. Эту силу можно выразить так:

Но если рассматривать колебания с маленькими углами отклонения, то

так как

. Величина
постоянна. Обозначим ее через k. Тогда

Направлена сила в сторону противоположную смещению.

Превращения энергии при свободных колебаниях.


Отведем маятник на небольшой угол a от положения равновесия. Этим мы сообщим маятнику потенциальную энергию:


Где Hmax – максимальная высота подъема маятника.

Отпустим маятник. Под действием силы тяжести и силы реакции маятника будет двигаться к положению равновесия. При этом его потенциальная энергия превращается в кинетическую. В положении равновесия вся сообщенная маятнику потенциальная энергия превратится в кинетическую:

Где

- максимальное значение скорости движения тела, подвешенного к нити.

При отсутствии сил трения по закону сохранения энергии максимальное значение потенциальной энергии равно максимальному значению кинетической энергии:

Итак, при колебаниях маятника происходит периодическое превращении потенциальной энергии в кинетическую и обратно:

В произвольный момент полная механическая энергия колеблющегося тела по закону превращения и сохранения энергии равна сумме его потенциальной и кинетической энергии:

Период.

Период колебаний маятника, близкого по своим свойствам к математическому маятнику, не зависит от массы маятника.


Заставим маятник описывать коническую поверхность. В этом случае шарик маятника двигается по окружности. Определив период обращения маятника, обнаружим, что он равен периоду колебаний этого маятника:

Период обращения конического маятника же равен длине описываемой окружности, деленной на линейную скорость:

На шарик действует центростремительная сила, так как он двигается по окружности.

Итак период математического маятника зависит только от длины маятник l и от ускорения свободного падения g.

Сдвиг фаз.

Возьмем два одинаковых маятника и отклоним их в одну и ту же сторону на один и тот же угол от вертикали. Если теперь их отпустить, то мы два гармонических колебания с одинаковыми амплитудами и частотами. Казалось бы, никакого различия между ними быть не может.

Однако стоит нам отпустить маятники не одновременно, и мы сразу увидим разницу: колебания будут сдвинуты по времени.

Про колебания одинаковой частоты, но смещенные по времени, говорят, что они сдвинуты по фазе. Смещение по времени выражается в долях периода, а сдвиг или разность фаз – в угловых единицах.

Если второе колебание запаздывает по сравнению с первым на 1/8 периода, то это значит, что оно отстает по фазе на 360*1/8=45, или сдвинуто по фазе на –45. Если второе колебание опережает первое на 1/8 периода, то говорят, что оно опережает его по фазе на 45, или сдвинуто по фазе +45.

Если колебания происходят без запаздывания, то их называют синфазными, или говорят, что они совершаются в фазе. При запаздывание одного на полпериода говорят, что колебания происходят в противофазе.

Вынужденные колебания.

Мы уже упоминали о таких случаях, когда периодическое движение тела происходит не свободно, а в результате действия периодически меняющейся силы.

Подобные повторяющиеся силы вызывают периодическое движение даже таких тел, которые сами не являются колебательными системами.

Но как будет обстоять дело в том случае, если периодическая система действует на колебательную систему.

1. В колебательной системе, на которую действует периодически меняющиеся сила, устанавливается периодическое движение.

2. Частота вынужденных колебаний равна частоте действующей силы.

Резонанс

Если постепенно увеличивать частоту вынуждающей силы то рано или поздно мы увидим, что когда частота вынуждающей силы приблизится к собственной частоте колебательной системы, то амплитуда колебаний резко возрастает. Амплитуда колебаний максимальна, когда частота вынуждающей силы равна собственной частоте колебательной системы. При дальнейшем росте частоты вынуждающей силы амплитуда колебаний уменьшается. Явление резкого возрастания амплитуды вынужденных колебаний при равенстве частот вынуждающей силы и собственной частоты колебательной системы называется резонансом.

В чем причина явления резонанса, почему растет амплитуда колебаний, когда частота вынуждающей силы приближается к собственной частоте.

Совпадение частот означает, что сила упругости действует «в такт» с вынуждающей силой. Если сила упругости и вынуждающая сила в какие-то моменты действуют в одном направлении, то они складываются и их действие усиливается. И даже если вынуждающая сила мала, она все равно приведет к росту амплитуды. Ведь эта малая сила будет добавляться к силе упругости каждый период.

Явление резонанса может быть полезным, поскольку оно позволяет получить даже с помощью малой силы большое увеличение амплитуды колебаний. С другой стороны, резонанс может оказаться вредным и даже опасным. Если, например, на фундаменте установлена машина, в которой какие-нибудь части совершают периодические движения, то колебания передаются фундаменту и он будет совершать вынужденные колебания. Фундамент – это тоже колебательная система со своей собственной частотой. И если частота периодических движений совпадает с собственной частотой фундамента, то амплитуда его колебаний может возрасти настолько, что это приведет к его разрушению. Известно несколько исторических примеров, например, в XIX в. обрушился Египетский мост в Петербурге. По мосту шел в ногу отряд кавалергардов. Ритм их строевого шага случайно совпал с собственной частотой сооружения, амплитуда вынужденных колебаний стала резко возрастать, смещения превысили расчетную критическую величину – и мост не выдержал.