МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ
(технический университет)
ФАКУЛЬТЕТ ЭЛЕКТРОННОЙ ТЕХНИКИ
КИНЕТИЧЕСКОЕ УРАВНЕНИЕ БОЛЬЦМАНА.
ВЫПОЛНИЛ:
Коркин С.В.
ГРУППА:
ЭТ-9-00
ПРЕПОДАВАТЕЛЬ
Шеркунов Ю.Б.
Вторая половина работы набита достаточно сложной математикой. Автор (KorkinSV@mpei.ru, korkin_s_v@chat.ru)не считает этот курсовой идеальным, он может служить лишь отправной точкой для написания более совершенной (и понятной) работы. Текст не является копией книги. Вспомогательную литературу см. в конце.
Курсовой принят с отметкой ОТЛ. (Окончательный вариант работы немножко затерялся. Предлагаю воспользоваться предпоследней «версией»).
2002 год.
Содержание:
Условные обозначения………………………………………………………………. 4
§1 Функция распределения.
§2 Столкновение частиц.
§3 Определение вида интеграла столкновений
и уравнения Больцмана.
§4. Кинетическое уравнение для слабо неоднородного газа.
Теплопроводность газа.
Некоторые условные обозначения:
n - концентрация частиц;
d - среднее расстояние между частицами;
V - некоторый объём системы;
P - вероятность некоторого события;
f - функция распределения;
Введение.
Разделы физики термодинамика, статистическая физика и физическая кинетика занимаются изучением физических процессов, происходящих в макроскопических системах - телах, состоящих из большого числа микрочастиц. В зависимости от вида системы такими микрочастицами могут являться атомы, молекулы, ионы, электроны, фотоны или иные частицы. На сегодняшний день существуют два основных метода исследования состояний макроскопических систем - термодинамический, характеризующий состояние системы через макроскопические легко измеряемые параметры (например, давление, объём, температура, количество молей или концентрация вещества) и, по сути, не учитывающий атомно-молекулярную структуру вещества, и статистический метод, основанный на атомно-молекулярной модели рассматриваемой системы. Термодинамический метод не будет затрагиваться в данной работе. По известным законам поведения частиц системы статистический метод позволяет установить законы поведения всей макросистемы в целом. С целью упрощения решаемой задачи при статистическом подходе делается ряд предположений (допущений) о поведении микрочастиц и, следовательно, результаты, полученные статметодом, справедливы лишь в пределах сделанных допущений. Статистический метод использует вероятностный подход к решению задач, для использования этого метода система обязана содержать достаточно большое количество частиц. Одна из задач, решаемая статметодом, - вывод уравнения состояния макроскопической системы. Состояние системы может быть неизменным во времени (равновесная система) либо может изменяться с течением времени (неравновесная система). Изучением неравновесных состояний систем и процессов, происходящих в таких системах, занимается физическая кинетика.
Уравнение состояния развивающейся во времени системы представляет собой кинетическое уравнение, решение которого определяет состояние системы в любой момент времени. Интерес к кинетическим уравнениям связан с возможностью их применения в различных областях физики: в кинетической теории газа, в астрофизике, физике плазмы, механике жидкостей. В данной работе рассматривается кинетическое уравнение, выведенное одним из основоположников статистической физики и физической кинетики австрийским физиком Людвигом Больцманом в 1872 году и носящее его имя.
§1 Функция распределения.
- частицы газа неразличимы (одинаковы);
- частицы сталкиваются только попарно (пренебрегаем столкновением одновременно трех и более частиц);
- непосредственно перед столкновением частицы движутся по одной прямой навстречу друг другу;
- столкновение молекул есть прямой центральный упругий удар;
и . Обозначим через
Поступательное движение классической частицы описывается координатами