Смекни!
smekni.com

Кинетическое уравнение Больцмана (стр. 4 из 6)

Для качественного рассмотрения кинетических явлений, протекающих в газе, используют грубые оценки интеграла столкновений через два параметра: длины свободного пробега и времени свободного пробега . Пусть при движении молекула прошла единицу длины, столкнувшись при этом с молекулами, находящимися в объеме прямого цилиндра единичной длины и площадью основания ( - эффективное сечение молекулы). В этом объёме имеется молекул.

-

среднее расстояние между молекулами;

Величина - время свободного пробега. Для грубой оценки интеграла столкновений можно использовать:

Записанная в числителе разность учитывает тот факт, что интеграл столкновений обращаются в нуль для равновесной функции распределения, а знак “минус” говорит о том, что столкновения являются механизмом установления статистического равновесия, т.е. стремятся уменьшить отклонение функции распределения от равновесной ( иными словами, любая система, выведенная из состояния равновесия, отвечающего минимальной внутренней энергии системы, и предоставленная самой себе, стремится вернуться в равновесное состояние).

§3 Переход к макроскопическим уравнениям. Гидродинамическое уравнение непрерывности.

Кинетическое уравнение Больцмана даёт микроскопическое описание эволюции состояния газа. Но на практике часто не требуется столь детально описывать процессы, поэтому при рассмотрении задач гидродинамики, задач о протекании процессов в неоднородных или сильно разреженных газах, задач о теплопроводности и диффузии газов и ряда других имеет смысл переходить к менее детальным (а следовательно более простым ) макроскопическим уравнениям. Такое описание применимо к газу, если его макроскопические свойства (температура, плотность, концентрация частиц, давление и т.п.) достаточно медленно меняются вдоль любого, произвольно выбранного направления в газе. Расстояния, на которых происходит существенное изменение макрокскопических параметров, должны значительно превышать длину свободного пробега молекул.

В качестве примера рассмотрим рассмотрим способ получения гидродинамического уравнения.

Выражение определяет плотность распределения молекул газа в пространстве (концентрацию молекул газа). Произведение массы одной молекулы (предполагается, что газ состоит из одинаковых частиц) на плотность распределения молекул даёт массовую плотность газа: . Обозначим через макроскопическую скорость движения газа как целого, а через микроскопическую скорость молекул. Макроскопическая скорость (скорость движения центра масс) может быть определена как средняя величина от микроскопических скоростей молекул

Столкновения не изменяют ни количества сталкивающихся частиц ни их суммарной энергии или импульса (столкновение молекул считается абсолютно упругим ударом). Столкновительная часть изменения функции распределения не может привести к изменению плотности, внутренней энергии, скорости и любых других макроскопических параметров газа в каждом его элементе объёма. Действительно, столкновительная часть изменения полного числа молекул в единице объёма газа даётся равным нулю интегралом:

(14)

Убедимся в справедливости этого равенства следующим способом:

Интегрирование производится по каждой из переменых , а значит можно, не меняя интеграла, произвести переобозначение переменных, например, во втором интеграле :


Последнее выражение, очевидно, равно нулю и, следовательно, справедливым является равенство (14).

Запишем кинетическое уравнение и, предварительно умножив обе его части на массу частицы m , интегрируем его по :

Отсюда немедленно получаем гидродинамическое уравнение непрерывности:

Задав в этом дифференциальном уравнении изменение плотности жидкости и считая жидкость несжимаемой, можно получить векторное поле направлений скоростей в любой точке жидкости.

§4. Слабо неоднородный газ. Теплопроводность газа.

Все реальные физические процессы обязательно протекают с некоторыми потерями энергии (т.е. происходит диссипация энергии – переход энергии упорядоченного движения в энергию хаотического движения, например, в тепловое движение молекул газа). Для рассмотрения диссипативных процессов (теплопроводности или вязкости) в слабо неоднородном газе необходимо использовать следующее приближение: функцию распределения в малом участке газа следует считать не локально равновесной, как в случае однородного газа, а отличающейся от равновесной на некоторую достаточно малую (т.к. газ слабо неоднородный) величину . Функция распределения примет вид , а саму поправку запишем в виде . Функция должна удовлетворять определённым условиям. Если заданным плотностям числа частиц, энергии и импульса газа

т.е. интегралам отвечает равновесная функция , то неравновесная функция должна приводить к тем же значениям этих величин (интегралы с и должны совпадать ), что имеет место только когда

Преобразуем интеграл столкновений в кинетическом уравнении (13): подстановка выражений функции распределения и поправки , обнуление интегралов столкновений,содержащих равновесную функцию распределения, сокращение членов , не содержащих малой поправки . Члены первого порядка дадут . Символ введен для обозначения линейного интегрального
оператора

Указанный интеграл обращается в нуль для функций вида


Запишем (без вывода) кинетическое уравнение для слабо неоднородного газа., сохранив для рассмотрения задачи о теплопроврдности в левой части уравнения только одно слагаемое с градиентом температуры