
С учётом утверждения (*)

Интегрируя последнее равенство (для использования в дальнейшем) получаем соотношение:
(4)
§3

Вывод кинетического уравнения.
Рассмотрим производную от функции распределения по времени:

При движении молекул газа в отсутствии внешнего поля величины Г, как интегралы движения, не изменяются.
(5)
(последнее слагаемое в выражении производной обнуляется , т.к. )

( оператор набла)
Выражение для производной примет вид : (6)

Пусть теперь газ находится во внешнем потенциальном поле , действующем на координаты центра тяжести молекул (например, в гравитационном поле). И пусть F – сила, действующая со стороны поля на частицу.
(7)

Правую часть равенства (6) обозначим через . Символ означает
скорость изменения функции распределения благодаря столкновениям, а величина

есть отнесённое к единице времени изменение за счёт столкновений числа молекул в фазовом объёме . Полное изменение функции распределения в заданной точке фазового пространства запишется в виде :

(8)
Величина называется интегралом столкновений, а уравнение вида (8) – кинетическим уравнением. Реальный смысл кинетическое уравнение (8) примет только после определения вида интеграла столкновений.
§3 Определение вида интеграла столкновений и уравнения Больцмана.

Во время столкновения молекул происходит изменение величин, от которых зависит функция распределения. Учитывая тот факт, что время наблюдения состояния системы и координаты частиц изменяются, не зависимо от того, произошло или нет столкновение частиц (которое влияет лишь на характер изменения координат),можно утверждать,что изменяются величины Г столкнувшихся молекул. Рассматривая достаточно малый интервал, обнаружим, что молекулы при столкновении выводятся из этого интервала, т.е. имеют место акты “ухода”. Пусть двум столкнувшимся молекулам соответствуют, как и ранее, величины и до столкновения ,а , после столкновения (для краткости говорим о переходе ).

Полное число столкновений при вышеуказанном переходе со всеми возможными значениями

при заданном , происходящих в единицу времени в объёме ,определяется интегралом

В то же время происходят столкновения иного рода (называемые “приходом”), в результате которых молекулы, обладавшие до столкновения значениями величин , лежащими вне заданного интервала , попадают в этот интервал. Такие переходы могут быть обозначены следующим образом: (со всеми возможными значениями при заданном ). Аналогично первому типу перехода полное число таких столкновений в единицу времени в объёме равно:

В результате всех столкновений изменение числа молекул в единицу времени в элементарном объёме определяется разностью между числом актов ухода и числом актов прихода:

(9) , где
и

Интеграл столкновений может быть определён как:
(10)
(изменение числа частиц в единицу времени в фазовом объёме dVdГ )

Из соотношений (8) и (9) получим вид интеграла столкновений
(11)

Заметим, что во втором члене подынтегрального выражения интегрирование по имеет

отношение только к функции . Множители и не зависят от переменных . Преобразовав эту часть интеграла с помощью соотношения (4) , получим окончательный вид интеграла столкновений

(12)
и кинетического уравнения

(13)
Полученное интегрально - дифференциальное уравнение носит название уравнения Больцмана.

Рассмотрим не зависящее от времени распределение в состоянии равновесия системы в отсутствии внешних воздействий. Такое распределение является стационарным (не зависит от времени) и однородным (не изменяется в области пространства, занимаемой системой). Наложенные условия обнуляют производную функции распределения по времени и трём координатам; левая часть кинетического уравнения обращается в нуль. Подынтегральное выражение обращается в нуль вследствие равенства (3). Следовательно, равновесное распределение в отсутствии внешних полей удовлетворяет кинетическому уравнению тождественным образом. Если газ находится в равновесном состоянии под действием внешнего потенциального (например, гравитационного) поля, то функция распределения и в этом случае удовлетворяет кинетическому уравнению. Действительно, равновесное распределение выражается через интеграл движения – полную энергию молекулы . Левая часть кинетического уравнения представляет собой полную производную , которая равна нулю как производная от функции, зависящей только от интегралов движения. Правая часть уравнения, как уже было указано, есть нуль. Таким образом, кинетическому уравнению удовлетворяет и функция распределения газа, находящегося в равновесии во внешнем потенциальном поле.

К указанным во “Введении” допущениям добавим ещё одно: столкновения молекул рассматриваются как мгновенные акты, происходящие в одной “точке” пространства. Кинетическое уравнение описывает процес, который протекает в интервале времени, много большем по сравнению с длительностью столкновений. В то же время, рассматриваемая область системы должна значительно превышать область столкновения частиц, которая имеет размеры порядка величины радиуса действия молекулярных сил d. Время столкновения по порядку величины может быть определено как ( - средняя скорость движения молекул в газе). Полученные значения представляют собой нижний предел расстояния и времени, при рассмотрении которых допускается применение кинетического уравнения. Реальные физические задачи не требуют столь детального описания процесса; размеры системы и время наблюдения значительно превышают требуемый минимум.