«После открытия нейтрона, - говорил Паули, - на семинарах в Риме мою новую частицу, испускаемую при β-распаде, Ферми стал называть «нейтрино», чтобы отличить её от тяжёлого нейтрона. Это итальянское название стало общепринятым».
В 30-годы теория Ферми была обобщена на позитронный распад (Вик, 1934 год) и на переходы с изменением углового момента ядра (Гамов и Теллер, 1937 год).
«Судьбу» нейтрино можно сравнить с «судьбой» электрона. Обе частицы были вначале гипотетическими – электрон был введён, чтобы привести атомную структуру вещества в соответствие с законами электролиза, а нейтрино – для спасения закона сохранения энергии в процессе β-распада. И только значительно позже они были открыты как реально существующие.
В 1962 было выяснено, что существуют два разных нейтрино: электронное и мюонное. В 1964 в распадах нейтральных К-мезонов было обнаружено несохранение т. н. комбинированной чётности (введённой Ли Цзун-дао и Ян Чжэнь-нином и независимо Л. Д. Ландау в 1956), означающее необходимость пересмотра привычных взглядов на поведение физических процессов при операции отражения времени.
Конец 40-х — начало 50-х гг. ознаменовались открытием большой группы частиц с необычными свойствами, получивших название “странных”. Первые частицы этой группы К+- и К--мезоны, L-, S+ -, S- -, X- -гипероны были открыты в космических лучах, последующие открытия странных частиц были сделаны на ускорителях — установках, создающих интенсивные потоки быстрых протонов и электронов. При столкновении с веществом ускоренные протоны и электроны рождают новые элементарные частицы, которые и становятся предметом изучения.
В 1947 г. Батлер и Рочестер в камере Вильсона наблюдали две частицы, названные V-частицами. Наблюдалось два трека, как бы образующие латинскую букву V. Образование двух треков свидетельствовало о том, что частицы нестабильны и распадаются на другие, более лёгкие. Одна из V-частиц была нейтральной и распадалась на две заряженные частицы с противоположными зарядами. (Позже она была отождествлена с нейтральным К-мезоном, который распадается на положительный и отрицательный пионы). Другая была заряженной и распадалась на заряженную частицу с меньшей массой и нейтральную частицу. (Позже она была отождествлена с заряженным К+-мезоном, который распадается на заряженный и нейтральный пионы).
V-частицы допускают, на первый взгляд, и другую интерпретацию: их появление можно было бы истолковать не как распад частиц, а как процесс рассеяния. Действительно, процессы рассеяния заряженной частицы на ядре с образованием в конечном состоянии одной заряженной частицы, а также неупругого рассеяния нейтральной частицы на ядре с образованием двух заряженных частиц будут выглядеть в камере Вильсона так же, как и распад V-частиц. Но такая возможность легко исключалась на том основании, что процессы рассеивания более вероятны в более плотных средах. А V-события наблюдались не в свинце, который присутствовал в камере Вильсона, а непосредственно в самой камере, которая заполнена газом с меньшей плотностью (по сравнению с плотностью свинца).
Заметим, что если экспериментальное открытие π-мезона было в каком-то смысле «ожидаемым» в связи с необходимостью объяснить природу нуклонных взаимодействий, то открытие V-частиц, как и открытие мюона, оказалось полной неожиданностью.
Открытие V-частиц и определение их самых «элементарных» характеристик растянулось более чем на десятилетие. После первого наблюдения этих частиц в 1947г. Рочестер и Батлер продолжали свои опыты ещё два года, но им не удалось наблюдать ни одной частицы. И только после того как аппаратуру подняли высоко в горы, были снова обнаружены V-частицы, а также и открыты новые частицы.
Как выяснилось позднее, все эти наблюдения оказались наблюдениями различных распадов одной и той же частицы – К-мезона (заряженного или нейтрального).
«Поведение» V-частиц при рождении и последующем распаде привело к тому, что их стали называть странными.
Странные частицы в лаборатории впервые получены в 1954г. Фаулером, Шаттом, Торндайком и Вайтмором, которые, используя пучок ионов от Брукхейвенского космотрона с начальной энергией 1,5 ГэВ, наблюдали реакции ассоциативного образования странных частиц.
С начала 50-х гг. ускорители превратились в основной инструмент для исследования элементарных частиц. В 70-х гг. энергии частиц, разогнанных на ускорителях, составили десятки и сотни млрд. электрон-вольт (ГэВ). Стремление к увеличению энергий частиц обусловлено тем, что высокие энергии открывают возможность изучения строения материи на тем меньших расстояниях, чем выше энергия сталкивающихся частиц. Ускорители существенно увеличили темп получения новых данных и в короткий срок расширили и обогатили наше знание свойств микромира. Применение ускорителей для изучения странных частиц позволило более детально изучить их свойства, в частности особенности их распада, и вскоре привело к важному открытию: выяснению возможности изменения характеристик некоторых микропроцессов при операции зеркального отражения — т. н. нарушению пространств, чётности (1956). Ввод в строй протонных ускорителей с энергиями в миллиарды электрон-вольт позволил открыть тяжёлые античастицы: антипротон (1955), антинейтрон (1956), антисигма-гипероны (1960). В 1964 был открыт самый тяжёлый гиперон W- (с массой около двух масс протона).
В 1960-х гг. на ускорителях было открыто большое число крайне неустойчивых (по сравнению с др. нестабильными элементарными частицами) частиц, получивших название “резонансов”. Массы большинства резонансов превышают массу протона. Первый из них D1 (1232) был известен с 1953 г. Оказалось, что резонансы составляют основная часть элементарных частиц.
Сильное взаимодействие π-мезона и нуклона в состоянии с полным изотопическим спином 3/2 и моментом 3/2 приводит к появлению у нуклона возбуждённого состояния. Это состояние в течение очень короткого времени (порядка 10-23с) распадается на нуклон и π-мезон. Поскольку это состояние имеет вполне определённые квантовые числа, как и стабильные элементарные частицы, естественно было назвать его частицей. Чтобы подчеркнуть очень малое время жизни этого состояния, его и подобные короткоживущие состояния стали называть резонансными.
Нуклонный резонанс, открытый Ферми в 1952 г., позже стали называть Δ3/2 3/2 – изобарой (чтобы выделить тот факт, что спин и изотопический спин Δ-изобары равны 3/2). Так как время жизни резонансов незначительна, их нельзя наблюдать непосредственно, аналогично тому, как наблюдают «обычные» протон, π-мезоны и мюоны (по их следам в трековых приборах). Резонансы обнаруживают по характерному поведению сечений рассеивания частиц, а также изучая свойства продуктов их распада. Большинство известных элементарных частиц относится именно к группе резонансов.
Открытие Δ-резонанса имело важнейшее значение для физики элементарных частиц.
Заметим, что возбуждённые состояния или резонансы не являются абсолютно новыми объектами физики. Ранее они были известны в атомной и ядерной физике, где их существование связано с составной природой атома (образованного из ядра и электронов) и ядра (образованного из протонов и нейтронов). Что касается свойств атомных состояний, то они определяются только электромагнитным взаимодействием. Малые вероятности их распада связаны с малостью константы электромагнитного взаимодействия.
Возбуждённые состояния существуют не только у нуклона (в этом случае говорят о его изобарных состояниях), но и у π-мезона (в этом случае говорят о мезонных резонансах).
«Причина появления резонансов в сильных взаимодействиях непонятна – пишет Фейнман, - сначала теоретики и не предполагали, что в теории поля с большой константой взаимодействия существуют резонансы. Позднее они осознали, что если константа взаимодействия достаточно велика, то возникают изобарные состояния. Однако истинное значение факта существования резонансов для фундаментальной теории остаётся неясной».
В конце 1974г. две группы экспериментаторов (группа Тинга на протонном ускорителе в Брукхейвене и группа Б. Рихтера, работавшая на установке со встречными электронно-позитронными пучками в Стэнфорде) одновременно сделали важнейшее открытие в физике элементарных частиц: открыли новую частицу – резонанс с массой, равной 3,1 ГэВ (превышающей три массы протона).
Наиболее удивительным свойством этого резонанса оказалась его малая ширина распада – она равна всего 70кэВ, что соответствует времени жизни порядка 10-23с.
Общепринятое объяснение природы ψ-мезонов основано на гипотезе существования наряду со «стандарными» тремя u-,d- и s-кварками ещё четвёртого, с-кварком. От известных ранее кварков с-кварк отличается значением нового квантового числа, названного чармом. Поэтому с-кварк получил название чармового – или очарованного – кварка.
В 1974 были обнаружены и другие массивные (в 3—4 протонные массы) и в то же время относительно устойчивые y-частицы, с временем жизни, необычно большим для резонансов. Они оказались тесно связанными с новым семейством элементарных частиц — “очарованных”, первые представители которого (D0, D+, Lс) были открыты в 1976. В 1975 были получены первые сведения о существовании тяжёлого аналога электрона и мюона (тяжёлого лептона t).
За открытие ψ-частиц Тингу и Рихтеру в 1976 году была присуждена Нобелевская премия по физике.
В 1977г. были открыты более тяжёлые (по сравнению с ψ-частицами) нейтральные мезоны с массами порядка 10ГэВ, т.е. более чем в десять раз тяжелее нуклонов. Как и в случае ψ-мезонов, эти мезоны, получившие название «ипсилон»-мезонов, были наблюдены в реакции образования мюонных пар в протон-ядерных столкновениях.