При ионно-сорбционной откачке используют два способа поглощения газа : внедрение ионов в объем твердого тела под действием электрического поля и химическое взаимодействие откачиваемых газов с тонкими пленками активных металлов .
Высокоэнергетические ионы или нейтральные частицы , бомбардируя твердое тело , проникают в него на глубину , достаточную для их растворения .Этот способ удаления газа является разновидностью ионной откачки . На рис. 1 показано равновесное распределение концентрации при ионной откачке в объеме неограниченной пластины толщиной
, рассоложенной внутри вакуумной камеры .Максимальную удельную геометрическую быстроту ионной откачки можно рассчитать по формуле
(1) , где – коэффициент внедрения ионов ; = – удельная частота бомбардировки ; – плотность ионного тока ; – элементарный электрический заряд ; – молекулярная концентрация газа .Коэффициент внедрения учитывает частичное отражение и рассеивание , возникающее при ионной бомбардировке . Коэффициент внедрения сильно зависит от температуры тела и слабо – от плотности тока и ускоряющего напряжения . Значение
наблюдается для Ti , Zn при 300 … 500 К .Максимальное значение концентрации растворенного газа при ионной откачке можно определить из условия равновесия газовых потоков :
(2) ( D – коэффициент диффузии газа в твердом теле ) . Градиенты концентраций определяются следующими отношениями : здесь – глубина внедрения ионов ( – ускоряющее напряжение ) ; и – максимальная и начальная концентрация плотности поглощенного газа .Так как величина
мала по сравнению с ( константа даже для легких газов не превышает 1.0 нм./кВ ) , то величиной в уравнение (2) можно пренебречь : .Отсюда следует выражение для максимальной концентрации растворенного газа :
.Если величина
, рассчитанная по приведенной формуле превышает максимально возможную в данных условиях растворимость газа в металле , то поглощенный газ начинает объединяться в газовые пузырьки , вызывая разрыв металла . Это явление получило название блистер-эффекта .В нержавеющей стали водородный блистер-эффект наблюдается при поглощение
м3*Па/см2 , что соответствует при быстроте откачки м3/(с*см2) и давление Па приблизительно 300 часов непрерывной работы .По известному значению
можно подсчитать общее количество газа , которое будет поглощено единицей поверхности .Во время ионной бомбардировки наблюдается распыление материала , сопровождающееся нанесением тонких пленок на электроды и корпус насоса . Сорбционная активность этих пленок используется для хемосорбционной откачки .
Распыление активного материала может осуществляться независимо от процесса откачки , например с помощью регулирования температуры нагревателя . Расход активного материала в таких насосах осуществляется независимо от потока откачиваемого газа .
Более экономно расходуется активный металл в насосах с саморегулированием распыления . В этих насосах распыление производится ионами откачиваемого газа , бомбардирующими катод , изготовленный из активного материала . Распыляемый материал осаждается на корпус и анод , где осуществляется хемосорбционная откачка .
Рис1. Установившееся распределение концентрации в неограниченной пластине , бомбардируемой высокоэнергетическими ионами .