Наряду с описанными, существуют еще операции умножения вектора на вектор. Их две: скалярное и векторное произведение векторов. Из их названий ясно, что результатом скалярного произведения векторов является скаляр, а результатом векторного произведения - вектор. Операция деления на вектор не определена.
Скалярным произведением векторов называется произведение их длин на косинус угла между ними. Скалярное произведение векторов A и B обозначается (AB) или A B. Если эти векторы заданы в проекциях на координатные оси, то для их скалярного произведения получится выражение:
(AB) = (exAx + eyAy + ezAz) (exBx + eyBy + ezBz) =
= (exex)AxBx + (exey)AxBy + (exez)AxBz +
+ (eyex)AyBx + (eyey)AyBy + (eyez)AyBz +
+ (ezex)AzBx + (ezey)AzBy + (ezez)AzBz =
=AxBx+AyBy+AzBz (6.4).
При выводе (6.4) мы воспользовались тождествами:
(exex) = (eyey) = (ezez) = 1;
(exey)=(eyez)=(ezex)=0 (6.5).
Введем понятие проекции вектора А на вектор В, которую обозначают AB:
. Соответственно, проекция вектора В на вектор А равна: , и для скалярного произведения векторов получим выражение: (АВ) = .
Векторным произведением векторов A и B называется вектор С, численно равный произведению модулей векторов A и B на синус угла между ними. Вектор С перпендикулярен обоим векторам, т.е. перпендикулярен плоскости, в которой они лежат. Таких направлений существует два, см. рис.6.3. Из них выбирают одно по правилу правого буравчика: если вращать ручку буравчика от вектора A к вектору B в направлении меньшего угла, то поступательное движение буравчика укажет направление векторного произведения С. Записывается векторное произведение или
. Величина векторного произведения равна , т.е. длина отрезка С численно равна площади параллелограмма, образованного отрезками А и B, см. рис.5.3. Таким образом, в окончательном виде получаем: , где - единичный вектор, перпендикулярный векторам и .Векторы, в том числе и радиус-вектор, могут меняться во времени, т.е. они являются функциями времени. Вектор может меняться разными способами. Во-первых, может меняться его длина (модуль) при неизменном направлении вектора в пространстве. Во-вторых, не меняясь по величине вектор может менять свое направление в пространстве. Наконец, вектор может меняться как по длине, так и по направлению. Проекции вектора на оси координат также являются функциями времени, т.е. переменными функциями. Переменные по какому- либо параметру функции могут быть продифференцированы или проинтегрированы по этому параметру. Дифференцирование и интегрирование векторных функций, в принципе, ничем не отличается от дифференцирования и интегрирования скалярных. Дифференцирование или интегрирование вектора можно свести к дифференцированию или интегрированию каждой из его проекций на оси координат. Производная радиуса-вектора по времени записывается в следующем виде:
. То же самое можно записать в других обозначениях: .Здесь и в дальнейшем для удобства и краткости производную по времени будем обозначать точкой над функцией. Приращение (полный дифференциал) радиуса-вектора будет равен:. Аналогично определяется и операция интегрирования векторной функции: .Как видно из (6.8) и (6.10), специфика интегрирования и дифференцирования векторных функций состоит лишь в необходимости проводить эти операции трижды, по разу для каждой проекции.
В некоторых случаях для упрощения описания явления вместо трехмерных векторов рассматривают двумерные и даже одномерные. Это возможно, если движение тела является, к примеру, плоским или прямолинейным. В общем случае такое упрощение описания происходит, если движение тела можно задать менее чем тремя параметрами.
Еще одно понятие, которое нам надо ввести- вероятность. Все знают, что вероятность выпадения “орла” при бросании монеты равна 1/2. Но что это значит? Означает ли это, что при двух бросаниях монеты один раз выпадет “орел” , а второй раз “решка”, или это что-то другое? Введем строгое понятие вероятности, а потом рассмотрим задачу с бросанием монеты.
Пусть у нас имеется система, в которой может реализоваться S какиx-то событий. При бросании монеты S=2. Одно событие - выпадение “орла”, второе - выпадение “решки”. В общем случае число событий может быть любым. Например, при бросании кости имеется 6 событий. Это выпадение одной из 6 цифр от 1 до 6. Мы проводим над системой N измерений. В каждом измерении регистрируем одно из S событий. Пусть N>>S. При измерении i события (i принадлежит множеству s, 1<i<S) мы получили его значение Ni раз. Относительной частотой выпадения i события называется величина Ni/N. Если устремить число измерений (т.е. N)к бесконечности, то относительная частота выпадения события будет равна вероятности выпадения или измерения этого события P(i):
P(i) = lim Ni/N при N -> (6.11).
Значит, если нам известна вероятность выпадения какого-то события, то при очень большом числе измерений N у нас событие i выпадет P(i) N раз. Значит, если мы бросаем монету 1 раз , мы ничего не сможем сказать, какой стороной она упадет. Но, если мы бросаем монету очень много раз (например 10000) то мы можем утверждать, что примерно 5000 раз выпадет “орел”, а 5000 раз- “решка.
Сумма вероятностей выпадения всех событий всегда будет нормирована и равна 1. Действительно, поскольку SNi=N, то имеем: SP(i)= S(Ni/N)=(SNi)/N=1.
Число событий может быть конечно, а может быть и бесконечно. Например, соседние скорости атомов в газе отличаются на бесконечно малую величину. В этом случае вероятность Р будет непрерывной функцией. Для газа, например, это будет функция распределения атомов по скоростям, известная из школьного курса как функция распределения Максвелла.
В заключении этого раздела сделаем акцент на двух моментах.
Первое. Математический аппарат современной физики и всего естествознания в целом огромен и очень сложен. В рамках курса невозможно даже просто перечислить все разделы, которые используются в науке. В этом разделе затронут лишь минимум некоторых разделов математики, необходимых для понимания фундаментальных законов естествознания: алгебры, геометрии, тригонометрии, математического анализа, дифференциального и интегрального исчисления, аналитической геометрии, векторного анализа, теории вероятностей.
Второе. В некоторых учебниках по естествознанию, написанных в основном людьми, не имеющими фундаментальной естественнонаучной подготовки , делаются попытки изложить все естествознание, опираясь на одну только арифметику. Это глубоко ошибочный подход. Без введения понятий переменной величины и функции и соответствующего математического аппарата невозможно не только описать, но даже просто осмыслить тот или иной закон естествознания. Во всех областях естественных и даже общественных наук имеются т. н. "динамические законы", т. е. законы, в которых что-либо меняется. Но даже самый простой динамический параметр скорость, невозможно ввести, не используя языка высшей математики - дифференциального исчисления. Ведь скорость -это производная исследуемой величины по времени.