Кулоновский член есть потенциальная энергия шара, заряженного равномерно по всему объёму зарядом Ze:
(3.1.6)Подставив в уравнения (3.1.5) и (3.1.6) радиус ядра r=r0A1/3, получим
(3.1.7) (3.1.8)а подставив (3.1.7) и (3.1.8) в (3.1.2), получим
. (3.1.9)Постоянные α, β и γ подбирают такими, чтобы формула (3.1.9) лучшим образом удовлетворяла всем значениям энергий связи, вычисленным по экспериментальным данным.
Пятый член, представляющий парную энергию, зависит от четности числа нуклонов:
(3.1.10)
Ферми уточнил также постоянные по новым экспериментальным данным. Полуэмпирическая формула Бете-Вейцзекера, выражающая массу нуклида в старых единицах (16О=16), получилась такой:
Таким образом, избыток масс, по Камерону, выразится так:
М - А = 8,367А - 0,783Z + αА +β +
+ ЕS + EC + Еα = П (Z, N). (3.2.5)
Подставив экспериментальные значения М—А методом наименьших квадратов получили следующие наиболее надежные значения эмпирических коэффициентов (в Мэв):
α=–17,0354; β=– 31,4506; γ=25,8357; φ=44,2355. (3.2.5а)
С помощью этих коэффициентов были вычислены массы. Расхождения между вычисленными и экспериментальными массами показаны на рис. 3.2.2. Как можно заметить, в некоторых случаях расхождения достигают 8 Мэв. Особенно велики они у нукли-дов с замкнутыми оболочками.
Камерон ввел дополнительные слагаемые: член, учитывающий влияние ядерных оболочек S(Z, N), и член P(Z, N), характеризующий парную энергию и учитывающий изменение массы в зависимости от четности N и Z:
М—А=П(Z, N)+S(Z, N)+P(Z, N). (3.2.6)
Рис. 3.2.2. Разности между значениями масс, вычисленными по основной формуле Камерона (3.2.5), и экспериментальными значениями тех же масс в зависимости от массового числа А.
При этом, т.к. теория не может предложить вида членов, который отражал бы некоторые скачкообразные изменения масс, он объединил их в одно выражение
T(Z, N)=S(Z, N)+P(Z. N). (3.2.7)
Далее была выдвинута гипотеза о том, что воздействие четности и оболочек зависит в отдельности от числа протонов Z и от числа нейтронов N, т.е.
T(Z, N)=T(Z) +T(N). (3.2.8)
Это разумное предложение, так как опытные данные подтверждают, что протонные оболочки заполняются независимо от нейтронных и парные энергии для протонов и нейтронов в первом приближении можно считать независимыми.
На основании таблиц масс Вапстра и Хьюзенга Камерон составил таблицы поправок T(Z) и T(N) на четность и заполнение оболочек.
Г. Ф. Драницына, использовав новые измерения масс Бано, Р. А. Демирханова и многочисленные новые измерения β- и α-распадов, уточнила значения поправок T(Z) и T(N) в области редких земель от Ва до Pb. Она составила новые таблицы избытков масс (М—А), вычисленных по исправленной формуле Камерона в этой области. В таблицах приведены также вычисленные заново энергии β-распадов нуклидов в той же области (56≤Z≤82).
Старые полуэмпирические формулы, охватывающие весь диапазон А, оказываются слишком неточными и дают очень большие расхождения с измеренными массами (порядка 10 Мэв). Создание Камероном таблиц с более чем 300 поправками уменьшило расхождение до 1 Мэв, но расхождения все же в сотни раз превышают погрешности измерений масс и их разностей. Тогда появилась идея разбить всю область нуклидов на подобласти и для каждой из них создать полуэмпирические формулы ограниченного применения. Такой путь и избрал Леви, который вместо одной формулы с универсальными коэффициентами, пригодными для всех А и Z, предложил формулу для отдельных участков последовательности нуклидов.
Наличие параболической зависимости от Z энергии связи нуклидов изобар требует, чтобы в формуле содержались члены до второй степени включительно. Поэтому Леви предложил такую функцию:
М(А, Z)=α0+ α1 А+ α2 Z+ α3 АZ+ α4 Z2+ α5 А2+δ; (3.2.9)
где α0, α1, α2, α3, α4, α5 – численные коэффициенты, найденные по опытным данным для некоторых интервалов, а δ — член, учитывающий спаривание нуклонов и зависящий от четности N и Z.
Все массы нуклидов разбили на девять подобластей, ограниченных ядерными оболочками и подоболочками, и значения всех коэффициентов формулы (3.2.9) вычислили по экспериментальным данным для каждой из этих подобластей. Значения найденных коэффициентов та и члена δ, определяемого четностью, приведены в табл. 3.2.1 и 3.2.2. Как видно из таблиц, были учтены не только оболочки из 28, 50, 82 и 126 протонов или нейтронов, но и подоболочки из 40, 64 и 140 протонов или нейтронов.
Таблица 3.2.1
Коэффициенты α в формуле Леви (3.2.9), ма. е. м (16О =16)
Z | N | α0 | α1 | α2 | α3 | α4 | α5 |
29–40 29–40 29–40 41–50 51–64 51–64 65–82 >82 >82 | 29–40 41–50 51–82 51–82 51–82 83–126 83–126 127–140 >140 | –155,91 –150,06 +96,27 –135,41 –133,60 –672,82 –83,72 –1746,56 571,90 | 13,202 7,359 3,780 5,342 6,399 13,059 3,843 18,067 –1,407 | –21,956 –10,094 –17,406 –9,712 –13,465 –14,140 –10,680 –10,846 –12,238 | –0,9707 –0,7023 –0,5349 –0,5570 –0,4287 –0,4461 –0,4644 –0,4364 –0,3971 | 1,4544 0,9473 0,8150 0,7432 0,6417 0,6492 0,6464 0,6133 0,5706 | 0,11565 0,10340 0,10050 0,09758 0,06583 0,05370 0,08739 0,05171 0,08613 |
Таблица 3.2.2