На щель S4 магнитным анализатором проектируется изображение источника ионов. Ионный ток силой 10–12 – 10–9а регистрируется электронным умножителем. Можно регулировать ширину всех щелей и перемещать их снаружи, не нарушая вакуума, что облегчает юстировку прибора.
Существенное отличие этого прибора от предыдущих – применение осциллографа и развертывание участка спектра масс, впервые примененное Смитом для синхрометра. При этом пилообразные импульсы напряжения используются -одновременно для перемещения луча в трубке осциллографа и для модуляции магнитного поля в анализаторе. Глубина модуляции подбирается такой, чтобы масс-спектр развертывался у щели примерно на удвоенную ширину одной линии дублета. Это мгновенное развертывание пика массы сильно облегчает фокусировку.
Как известно, если масса иона М изменилась на ΔМ, то для того чтобы траектория иона в данном электромагнитном поле осталась прежней, следует все электрические потенциалы изменить в ΔМ/М раз. Таким образом, для перехода от одной легкой составляющей дублета с массой М к другой составляющей, имеющей массу на ΔM большую, необходимо первоначальные разности потенциалов, приложенные к анализатору Ud, и к источнику ионов Ua, изменить соответственно на ΔUd и ΔUa так, чтобы
(2.1)Следовательно, разность масс ΔM дублета можно измерить по разности потенциалов ΔUd, необходимой для того, чтобы сфокусировать вместо одной составляющей дублета другую.
Разность потенциалов подается и измеряется по схеме изображенной на рис. 2.2. Все сопротивления, кроме R*, манганиновые, эталонные, заключены в термостат. R= R' =3 371 630 ± 65 ом. ΔR может изменяться от 0 до 100000 Oм, так что отношение ΔR/R известно с точностью до 1/50000. Сопротивление ΔR подобрано так, что при положении реле, включенном на контакт А, на щели S4, оказывается сфокусированной одна линия дублета, а при положении реле на контакт В – другая линия дублета. Реле – быстродействующее, переключается после каждого цикла развертывания в осциллографе, поэтому на экране можно видеть одновременно развертки обеих
линий дублета. Изменение потенциала ΔUd, вызванное добавочным сопротивлением ΔR, можно считать подобранным, если обе развертки совпадают. При этом другая аналогичная схема с синхронизированным реле должна обеспечить изменение ускоряющего напряжения Uа на ΔUa так, чтобы (2.2)Тогда разность масс дублета ΔM можно определить по дисперсионной формуле
(2.3)Частота развертки обычно довольно велика (например, 30 сек -1), поэтому шумы источников напряжения должны быть минимальны, но длительная устойчивость не обязательна. В этих условиях идеальным источником являются батареи.
Разрешающая сила синхрометра ограничена требованием сравнительно больших ионных токов, так как частота развертки велика. В данном приборе наибольшее значение разрешающей силы – 75000, но, как правило, оно меньше; наименьшее значение – 30000. Такая разрешающая сила позволяет отделить основные ионы от ионов примесей почти во всех случаях.
При измерениях считалось, что погрешность состоит из статистической погрешности и погрешности, вызванной неточностью калибровки сопротивлений.
Перед началом работы спектрометра и при определении различных разностей масс проводили серию контрольных измерений. Так, через определенные промежутки времени работы прибора измерялись контрольные дублеты O2 – S и C2H4 – СО, в результате чего было установлено, что в течение нескольких месяцев никаких изменений не произошло.
Для проверки линейности шкалы одну и ту же разность масс определяли при разных массовых числах, например по дублетам СН4 – О, С2Н4 – СО и ½(C3H8 – CO2). В результате этих контрольных измерений были получены значения, отличающиеся друг от друга лишь в пределах погрешностей. Эта проверка была проделана для четырех разностей масс, и согласие получилось очень хорошее.
Правильность результатов измерений подтвердилась также измерением трех разностей масс триплетов. Алгебраическая сумма трех разностей масс в триплете должна быть равна нулю. Результаты таких измерений для трех триплетов при разных массовых числах, т. е. в разных частях шкалы, оказались удовлетворительными.
Последним и очень важным контрольным измерением для проверки правильности дисперсионной формулы (2.3) было измерение массы атома водорода при больших массовых числах. Это измерение проделали один раз для А =87, как разность масс дублета C4H8O2 – С4Н7O2. Результаты 1,00816±2 а. е. м. с погрешностью до 1/50000 согласуются с измеренной массой Н, равной 1,0081442±2 а. е. м., в пределах погрешности измерения сопротивления ΔR и погрешности калибровки сопротивлений для этой части шкалы.
Все эти пять серий контрольных измерений показали, что формула дисперсии пригодна для данного прибора, а результаты измерений достаточно надежны. Данные измерений, выполненных на этом приборе, были использованы для составления таблиц.
§ 3. Полуэмпирические формулы для вычисления масс ядер и энергий связи ядер.
п.3.1. Старые полуэмпирические формулы.
По мере развития теории строения ядра и появления различных моделей ядра возникли попытки создания формул для вычисления масс ядер и энергий связи ядер. Эти формулы основываются на существующих теоретических представлениях о строении ядра, но при этом коэффициенты в них вычисляются из найденных экспериментальных масс ядер. Такие формулы частично основанные на теории и частично выведенные из опытных данных, называют полуэмпирическими формулами.
Полуэмпирическая формула масс имеет вид:
M(Z, N)=ZmH+Nmn-EB(Z, N), (3.1.1)
где M(Z, N) – масса нуклида с Z протонами и N – нейтронами; mH – масса нуклида Н1; mn – масса нейтрона; EB(Z, N) – энергия связи ядра.
Эта формула, основанная на статистической и капельной моделях ядра, предложена Вейцзекером. Вейцзекер перечислил известные из опыта закономерности изменения масс:
1. Энергии связи легчайших ядер возрастают очень быстро с массовыми числами.
2. Энергии связи ЕВ всех средних и тяжёлых ядер возрастают приблизительно линейно с массовыми числами А.
3. Средние энергии связи на один нуклон ЕВ/А лёгких ядер возрастают до А≈60.
4. Средние энергии связи на один нуклон ЕВ/А более тяжёлых ядер после А≈60 медленно убывают.
5. Ядра с чётным числом протонов и чётным числом нейтронов имеют несколько большие энергии связи, чем ядра с нечётным числом нуклонов.
6. Энергия связи стремится к максимуму для случая, когда числа протонов и нейтронов в ядре равны.
Вейцзекер учёл эти закономерности при создании полуэмпирической формулы энергии связи. Бете и Бечер несколько упростили эту формулу:
EB(Z, N)=E0+EI+ES+EC+EP. (3.1.2)
и её часто называют формулой Бете-Вейцзекера. Первый член Е0 – часть энергии, пропорциональная числу нуклонов; ЕI – изотопический или изобарный член энергии связи, показывающий, как изменяется энергия ядер при отклонении от линии наиболее устойчивых ядер; ЕS – поверхностная или свободная энергия капли нуклонной жидкости; ЕС – кулоновская энергия ядра; ЕР – парная энергия.
Первый член равен
Е0 = αА. (3.1.3)
Изотопический член ЕI есть функция разности N–Z. Т.к. влияние электрического заряда протонов предусматривается членом ЕС, ЕI есть следствие только ядерных сил. Зарядовая независимость ядерных сил, особенно сильно ощущаемая в лёгких ядрах, приводит к тому, что ядра наиболее устойчивы при N=Z. Так как уменьшение устойчивости ядер не зависит от знака N–Z, зависимость ЕI от N–Z должна быть по меньшей мере квадратичной. Статистическая теория даёт следующее выражение:
ЕI = –β(N–Z)2А–1. (3.1.4)
Поверхностная энергия капли с коэффициентом поверхностного натяжения σ равна
ЕS=4πr2σ. (3.1.5)